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Abstract

The Multi-objective de novo programming method is an effective tool to deal with the optimal system
design by determining the optimal level of resources allocation (RA) to improve the value of the
objective functions according to the price of resources (the conditions are certainty). This paper
suggested a new approach for solving uncertainty of De novo programming problems (DNP) using a
combination model consisting of a rough interval multi-objective programming (RIMOP) and DNP,
where coefficients of decision variables of objective functions and constraints are rough intervals (RIC).
Three methods are used to find the optimal system design for the proposed model, the first method is
the weighted sum method (WSM) which is used before reformulating RIMOP (bi of constraints is
known), WSM gives one ideal solution among the feasible solutions under each bound of sub-problem,
the second method is Zeleny’s approach and the third method is the optimal path- ratios, methods (two
and three) are used after formulating (RIMODNP) (bi of constraints is unknown), Zeleny’s approach
gives one (alternative) optimal system design under each bound of sub-problem, while the optimal path-
ratios method: after checking the bounds according to Shi’s theorem, determines whether the bounds of
the proposed model are feasible or not, and then use the method, this method uses three types of ratios
gives three (alternatives) under each bound of sub-problem. From the results, it is clear that the optimal
path-ratios method is more efficient than others in solving the proposed model because it provides
alternatives to the decision-maker (DM), it is noted that the proposed model is compatible with the
conditions and theories of RIC. As a result, the proposed model is very suitable for conditions of
uncertainty. Finally, applied example is also presented for the proposed model application.

Keywords: De novo programming, Multi-objective linear programming, Optimum-path ratios, Optimal
system design, Rough interval linear programming.

Introduction

Multi-objective linear programming factor or weighting factor according to the

(MOLP) techniques play an important role in solving
decision problems, which involve more than one
objective function®. These techniques use the priority

information obtained from the decision maker and
provide the decision maker with solutions. However,
since there are multi-objectives, it is very difficult to
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obtain optimal solutions using these techniques.
Therefore, one must look for satisfactory or bargain
solutions?3,

In mathematical techniques, both method of solution
and constraints affect the solution®. If the constraint
resources are not used to their full potential in a
mathematical model, the unused resources reduce the
level of achievement of the goals. Therefore, it is
very important to ensure that all objectives are
achieved at optimal levels, and that constrained
resources are used to their full potential®.

De novo programming (DNP) was
conducted by Zeleny®, which represents an ideal
system rather than an optimization of a specific
system. Today's production and management
systems are necessarily more flexible. It must be
quickly designed and redesigned, disassembled and
reassembled again, which requires continuous
reorganization of resources to ensure the feature.
Because all systems are built within their boundaries,
they lack alternatives, options, and design variables
in their creation environment. Therefore, when
redesigning, reconfiguring or optimizing the system,
its limitations and limitations must be worked out as
well. It is not enough to reshape it on the basis of a
specific system with its priorities and options.
Therefore, system design requires creation of
alternatives rather than selection. As opposed to
optimizing a specific system as standard methods do,
see’®

There are plenty of studies on DNP methods
and applications under certainty for instance, the
researchers’ proposed a new approach to project
portfolio design based on a systematic combination
of the data envelop analysis (DEA) model and DNP
optimization approach, the proposed model provides
optimal project portfolio design with minimal budget
as well, authors® generalized the DNP approach to
find the optimal design for production system,
suggesting more types of restrictions possible, in
particular ' >, =.

The worker® used lexical-objective
programming to find solutions of MODNP problem
with positive ideal solutions. New authors®
suggested a new approach min-max GP for solving
MODNP, they compare it with Umarusman’s
problem, they found that the solution gotten by min-
max GP approach are better than Umarusman’s
problem in same weights used.

Participantst'were used DNP to the
planning of urban parks in Taichung city, Taiwan.
They found that the DNP increases the total utility of

metropolitan parks by move resources from the
economic and ecological, thus MCDM and MOP
methods were able to provide an effective solution
for evaluating metropolitan parks.

Several authors!? applied MODNP by
formulating a problem to solve budget optimization
in the stock market, they proposed a new approach as
a case study based on data collected from the Bomba
Stock Exchange (BSE).

New study * applied DNP on PT.X
company by formulating LP problem to DNP, it
solved the problem by simplex method, where the
DNP technique achieved the optimal number of
productions.

They** proposed general method for solving
MODNP, by assuming the problem has two types of
objectives (Max and Min), they obtained that the
proposed method gives the DM freedom to select the
objectives functions which should be prioritized.
another workers®® suggested new approach named
‘one-step method’ for solving general DNP using
min-max GP technique, the solution obtained from
the one-step method is more efficient than the
classical DNP with crisp parameters.

In spite of Zeleny approach gives an optimal
system design when he applied DNP at certainty
conditions only, it did not work with uncertainty
conditions®. Many systems analysis methods were
developed for solving DNP under uncertainty, such
as fuzzy, interval, and stochastic programming. For
example,

The author'® applied the fuzzy goal
programming approach to a multi-criterion de novo
linear programming problem (a -MDNPLPP) by
defining appropriate membership functions and
aspiration levels, she found that the main advantage
of this approach gives to the DM more freedom to
determine the a-level and thus evaluate the effective
solution to reduce his incomplete knowledge about
the field.

The same above author!’ introduced a new
approach to solve MODNP by assuming possibilistic
objective functions coefficients. The solution of the
problem is achieved by using an efficient and
necessary condition.

The researchers'® proposed two concepts of
fuzzy and interval type-I1 fuzzy resources. The main
targets of their study are developed for resource
allocation and target setting using DNP.

The author®® used the fuzzy goal with fuzzy
parameters model and then integrating (positive and
negative) ideal solutions, also introduced a new
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fuzzy DNP technique, the recommended method,
which combined fuzzy resource unit pricing and
fuzzy constraint amount was used to construct the
fuzzy budget.

The researcher® is mainly concerned with
optimization, both static and dynamic. Under
ambiguous (Fuzzy) information, the optimization
problem is formulated as maximizing (or
minimizing) some utility function. He applied fuzzy
DNP model on sustainable regional development.
The interval DNP method for planning water
resources systems was used under uncertainty
conditions by?. The interval-fuzzy DNP for
planning water resources systems was used by?.
Monte-Carlo®-based interval fuzzy DNP method
developed for land-use planning under uncertainty.
Luhandjula's compensatory u6 - operator used to
solve the general MODNP problem under a fuzzy
environment in one step?>?. The fuzzy budget is
constructed by % using fuzzy unit pricing of
resources and fuzzy resource amounts of restrictions

In our study, rough interval coefficient (RIC)
used to develop the Zeleny approach by applying
uncertainty conditions. RIC has a main advantage

Materials and Methods

Methodology
Multi-objective Linear Programming Model
Multi-objective  linear  programming
(MOLP) is a model of optimizing a given system by
multiple objectives. It is usually impossible to
optimize all objectives simultaneously in a given
system. A trade-off means that one cannot increase
the level of satisfaction for an objective without
decreasing it for another one. Trade-offs is property
of an inadequately designed system and thus it can
be eliminated through designing a better one. MOLP
problem can be described as follows:
Consider the standard model of MOLP
max fi, = Z;Ll Crj Xj, k=12 ..,1,
subject to :
Z?:l al-j X]l < bi! i= 1,2, e, m,
1
X;=0,j=12,..,n
Where:

The parameters b; (i = 1,2, ..., m) represent
the given available resources as constants. The
efficient solution concept results from the solution of
the MOLP model see for more details?’%,

that makes it applicable when data are not available
or vague 2677,

The main question of our work is “How to
allocate resources under uncertainty conditions with
an un-determent budget?”’

In this paper, a proposed model is presented
to solve the uncertainty problem using multi-
objective linear programming with rough interval
coefficients (RIC) combine with de novo
programming, the proposed model would be Rough
Interval Multi-Objective De Novo Programming
(RIMODNP), three methods are used to solve
RIMODNP  (First: WSM before formulation,
assume right- hand side known, Second: Zeleny’s
approach, Third: Optimal path-ratios, two methods
are assumed right-hand side of constraints
unknown),  rest of this research is organized as
follows: Section 2 presents "Methodology" which
includes multi-objective linear programming, WSM,
Rough interval linear programming model, DNP and
MORIDNP and the steps of the proposed method.
Section 3 considers "applied example and results and
discussions ". And finally, the conclusion is given in
Section 4.

The Weighting Sum Method (WSM)

WSM?3>1 s used to solve multi-objective
functions, The basic idea of WSM is that it is uses
non-negative weights wy, wy, ....w,, multiplied by
the corresponding objective and then a composite
objective is calculated using summation of the
weighted objectives. Then, the objective is modified
for different weight combinations over and over
again.

Rough Interval Linear Programming Model:

The rough interval linear programming
Model (RILP) is extension of the linear
programming problem with rough interval
coefficients, to predict when a data value is not
properly known, but can be estimated with upper
interval and lower interval bounds, a rough interval
linear programming problem can be formulated as
follows:

Max or Min f = Z?=1([£]L ,g}’], [E]-L,E;]])xj
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subject to: Z? 1([giLj gf]j], [EiLj,E?j])xj <
([bf, b1, [bub ]) 2
Xj = 0,j=12,..,n, i=12,...,m
Where:

_L —U
(Lej. ¢i'1 [57, 65 Do

—L =U

L U LU ik 7Y
[Qij'ﬂij] [au'au]) and([gz'gz ] [bi:bi ])are
rough interval coefficients of objective function and
constraints and also, let x = (X,Xz,....,xn)' represent
the vector of all decision variables see for more
details?282°,

Properties of Rough Interval (RIC)
In order to validate the proposed model,
properties must be met°:

[fll'fl}] = [flj fl]] flJ _E] = ilj S]_CZ \L

three

—L v oL U
[rARS Cl]'C ] = le sGj=Gi =Gy

U U L ~=U
lal;. af) € [a@y;,ayj] = @ < aff < afy < aijJ
3

De Novo Programming Model

DNP is used for reshaping feasible sets in
linear systems, it is utilized as an approach of
optimum system design. Given resource pricing and
a budget, the MODNP problem is reformulated. To
get the DNP formulation from the problem 1, it is
necessary to convert b; from constants to variables,
and then determine their values as follows:

max fi = Z?=1 Crj Xj, k=12..,1
subject to :
P =145 Xj, <b,i=12,.
4
Lipibi < B,
>0,j=12,..,n
Where:

Xj, . b; are decision variables for products and
available resources respectively, p;, B are the given
of both the unit price of resource i and total available
budget respectively.

For single or multiple objective problems, f is for
maximizing profit.

From 2 follows: PAx <Pb<B

Defining n-vector of unit cost V = Pb it can be
rewriting problem 4 as the follows:

Max f;, =CX

s.t. VX<B , X=0
5

Solving single objective problems

Max f'=C'X i=1,2,3,...,k
s.t. VX<B

X=0

6

f* is k- vector of objective values for the ideal
system with respect to B.

the meta-optimum problem can be formulated as
follows:

Min Z=VX
s.t. CX>f"
X=>0

7

Solving problem 5 provides the solution:
X* ,B*=VX* b*=AX", for more details
see®10,

Optimum-Path Ratio Method for Solving DNP

The optimum-path ratio®® for achieving the
best performance for a given budget B is defined as:
the given budget level < B*. Optimal
system design for B: X = X", b =nb*, Z =, f"
, the optimum-path ratio represents an effective and
fast tool for the efficient optimal redesign of large-
scale linear systems. There are possible define six
types of optimum-path ratios as shown in Table 1:

_ B
Tl—E

Table 1. Six types of optimum-path ratios.

Rati - Ratl Ratio 3 Rali Ratio 5 Ratio 6
ol 02 04

rq T T3 T Ts - Ts ]
B _ B YiaBl _ B YaB YaB

- B* - B** = B** - B** = B* = B**

Where: ( X*,B* =V X,"b* = AX™) represent the
results of a meta-optimum and the value B*identifies
the minimum budget to achieve f*

So, (X*,B™ =V X™,b™ = AX™) represent the
results of a synthetic optimal solution: where the
value B** identifies the synthetic-optimum
performance f~ related to given combined budget

level Y; aiBij , (a; represent the weight of benefit

each B’l: to produce X{ in terms of the j™" criterion)®"
33
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Optimal System Design

It’s a set of designs that can be found through
optimum-path ratios as in Table 1, the following
optimum system designs can be determined:

(i) x!=rlx*, bl=
rib*™  and fl=rif*
8

(i) x2=r?x*, b=
r2b*™  and f?=r?f*
9

(i)  x3=1r3%*, b=
r3b**  and f3=r3f*
10

(iv) x*=r*x*, b*=
ﬂb* and f*=r*f*

(V) x> =r3x*, b°>=
rb* and f°> =r5f*
12

(vi) x®=r0"4, pb=
répnd and f6 — 7,,6]1'11(1
13

The optimum system design above (x%,b% f%),
1=1,....,6, Where:

b: Optimum portfolio of resources to be acquired at
the current market prices, p, allows one to produce
xt and realize the multi-criteria performance f!
SeelO—lZI

The Proposed Model of Rough Interval Multi-
Objective De Novo Programming (RIMODNP)
The general mathematical model 14 rough
interval multi-objective de novo programming
problem (RIMODNP) is as follows:
Min or Max f¥(X) =

—KL —KU
ﬁlZ?:l([Q’?LJQI;U ’ [Cij 'Cij Dxij

where k = 1,2..,K
subject to
—L —U
Yioa(laf;, afi] @i, @;)x; < b;
" ([P, PY),[P;,Pi Db; < ([B~BY].[B .B
j=1([P, B), [Py, Pi Dby < ([B*,B”],[B ,B ])
14
X =0, i=12,..
1,2,....,1L....
Where:
—KL —KU .
([cs V] ¢y, Cij 1) is a vector of rough
interval coefficients for multi objective function
(Laf, af], [EiLj,Ef}j]): is a matrix of rough interval

om, j=12,...,n,and k =

coefficients for  constraints of multi objective

) —L =U__ .
function, ([P}, P”],[P;,P; ]): is a vector of rough
interval coefficients of unit price of resources i and
—L —U
([QL,QU],[B B D is a rough interval of total
available budget.
where (i=12,...m; j=12,...,n) , X =

(%1, X5, ..., Xp)* denote the vector of all decision
variables.
—kL —kU
fRIG) = ([ka,f"‘U] : [f f D respectively and
k=1,2,..., K isthe number of objectives.

(i) The rough interval ([j_f"L,ikU]:[j_”kL,j_”kU])is
called the surely (possibly) optimal range of
problem 3, if optimal range is subset of

(£ £=):[F 7))

(i) Let [ﬁ“[ku]:[f“,fku] be surely optimal
(possibly) optimal range of the problem 14.
Then the rough interval

([ikL.ka],[ka,kaD is called the rough

optimal range of problem 14.
(iii) The optimal solution of each corresponding
MODNP problem 14 which its optimal value

belongs to [sz,ku]:[ka,j_ka] is called a

completely (rather) satisfactory solution of the
problem 14,

[Pf,P]] < [ﬁff?] =P, <P/ <P <P,
[EL'EU] c [EL,EU] N §L < QU < QL < EU

15

Converting the Proposed Model “Rough
Interval Multi-Objective De Novo
Programming” into Four Sub-models:

The rough interval multi-objective de novo
programming problem can be transformed into a
linear multi-objective program using Tong-
Shochang® Method, this method is used for solving
the problem by converting the major problem into
two classical sub-problems (Lower interval sub-
problem and Upper problem) and then convert lower
interval into two (1% bound of lower rough interval
and 2" bound of lower rough interval) also convert
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upper interval into two (1% bound of upper rough
interval and 2™ bound of upper rough interval) as
shown in 16:
Min or Max fX(X) =
—KL —KU

Y 2 ([CKE CRYLIC L Cij Dy
Subject to

n_([PF,PY],[Pi,P; )b; < ([B~B],[B".B"

]=1([_L ) [ L l]) = ([_ 1= ]:[ ’ ])

L —u
Yioa(laf;, afil @i, a;)x; < b
wherek =1,2,...,K,x; = 0

Min or Max f*(x) = X%, X7
StOZ? 1af; xij < bi

P!b;<BY x>0

]1_1

1C Xij

Min or Max ka(x) =
s.to Y- 1a x;j < bi
St PV b < BE, x>0

12 1CkU

—KkL
Minor Max f (x) = 12
s.to Z?=1 Eiijl-j < b,

—L —U
¥ P/b;<B ,

1C xU

XjZO

—kU —kU
Minor Max f (x) = X% X7, C  x;j
s.to Z;-lzl E?jxij < bi ’

U L
Yj-1Pibi<B

xj =0 yi=12...,m,j=
1,2,...,nand and kK =1,2,....,1
16

Where:

f kL (x): the multi-objective of the 1% bound of lower

rough interval.
i"”(x) . the multi-objective of the 2" bound of

lower rough interval.

—k
f L(x) : the multi-objective of the 1% bound of upper
rough interval.

}_fku(x) : the multi-objective of the 2™ bound of
upper rough interval.

Results and Discussion

In order to check our proposed model, numerical
example can be applied as follows:

The Steps of Proposed Model are as Follows:

Stepl: Converting RIMOP to MOP with four sub-
models with fixed right-hand side
(resources).

Step2: Solving MOP model using WSM with value
of wi = between (0,1) reaching to the
optimal values.

Step 3: Reformulating RIMOP obtain to RIMODNP
with  unknown  right-hand  side
(resources).

Step 4: Converting RIMODNP into four sub-models
using Tong-Shochang method.

Step 5: Solving each multi-objective function
individually under the set of constrains
using POM- QM for windows V5
software.

Step 6: Reformulating model 2 with multi-objectives
to allow the change the value of b;, as in
model 16 with unknown variables x
which represents unknown values of
capacities and requirements respecting
budget B that will be used.

Step 7: Computing structure design for model 16
separately for the individual objective
functions.

Step 8: Checking the results as to whether it is
feasible or not based on Shi’s theorem, if
the results gave infeasible solution go to
Step 9.

Step 9: Checking the results (bounds of rough
interval for objectives f and resources b of
optimal system design) for proposed model
16 if the results according to the properties
go to step 10, otherwise go to step 6.

Step 10: Calculating optimum-path ratios to find the

optimum system design.

Step 11: Choosing a design from among designs by
the decision maker.
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Applied Example:
The following example Rough Interval Multi-

Objective Linear Programming problem 17
(RIMOP):

Max f; = ([2.5,3],[1.5,3.5])x; +
([2.5,3],[2,3.5])x, (profit)

Max f, = ([3,2.5],[2.5,4])x; + ([3.5,4], [3,5])x;

(quality)
s.t. ([3,3.5],[2.5,5D)x; + ([2.5,3],[2,4])x, < 60
(raw materall) 17

([2.5,3],[2,4]) x; + ([3,3],[1.5, 4]) x, <40
(raw materal2)

([1.5,2],[1,2.5])) x; + ([3.54].[3,5]) x, <30
(raw materal3) X1,X2 =0

Stepl: Solving RIMOP before reformulation using
WSM: RIMOP is converted into four sub-models of
MOP as shown in Table 2 and then each sub-model
is solved individually.

Table 2. Convert RIMOP to MOP into four sub-models.

1% problem 2" problem

3" problem 4" problem

Max f% = 2.5x, + 2.5x,
Max f5 = 3x, + 3.5x,
s.t.
5x1 + 4x2 <60
4x+ 4x, < 40
2.5 x1+ 5 X2 <30

X1,X2 =20

Max f = 3%, + 3x,
Max f; = 2.5x; + 4x,
s.t.
2.5x; + 2x, < 60
2x.+ 1.5x, <40
x;+3x, <30
X1,%, 20

Max fl = 1.5x; + 2x,
Max ff = 2.5x; + 3x,
S. t.

3.5%, + 3%, < 60
3x,+ 3%, < 40

2 x,+4x, < 30

X1,%3 =0

Max f = 3.5x; + 3.5x,
Max fV = 4x; + 5x,

S. t.

3x; + 2.5x, < 60
2.5x,+ 3x, < 40
1.5x,+3.5x, <30
X1,% =0

Step 2: Table 3 represents the results obtained using
the WSM under the ratio between w; = (0,1). The
method is as follows: Determine the proportion for
each objective functions and then multiply the
objective function by the proportion that has been

determined, then collect the objective functions,
getting a composite objective function, finally, the
model is solved by PRO-QM to plot functions, as
shown in Table 3, and Figs. 1-4 for each sub-
problem.

Table 3. Results obtained from solving WSM provide optimal solutions for 1%t problem.

Weight Composite’s Optimal solution Optimal objective Optimal Composite’s
w = (Wq, W) objective (x1,%x2) value (f41, f2) objective
(0.0,1.0) 3x; + 3.5x, (0,6) (15,21) 30.00
(0.1,0.9) 2.65x; + 3.15x, (2,8) (25,31) 30.50
£ (0.2,0.8) 2.9x; + 3.4x, (8,2) (25,31) 30.00
3 (0.3,0.7) 2.85x; + 3.2x, (8,2) (25,31) 29.20
s (0.4,0.6) 2.8x; + 2.9x, (8,2) (25,31) 28.20
2, (0.5,0.5) 2.75x; + 3x, (8,2) (25,31) 28.00
(0.6,0.4) 2.5x; + 2.9x, (8,2) (25,31) 25.80
(0.7,0.3) 2.65x; + 2.8x, (8,2) (25,31) 26.80
(0.8,0.2) 2.6x1 + 2.7x, (8,2) (25,31) 26.20
(0.9,0.1) 2.55x; + 2.6x, (8,2) (25,31) 27.16
(1.0,0.0) 2.5x; + 2.5x, (10,0) (25,30) 25.00

Below is a graphical depiction of feasible decision
spaces, feasible objective space and optimal solution
of WSM for each sub-problem.
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feasible decision
space

Ll T2
9 X1 10

A

(25,30)

(25,31)

10 15 25 25
F1

B

Figure 1. Feasible of WSM for 15tbound lower rough interval (1% problem):
A) decision space, B) objective space.

From the results obtained in Table 3,
optimizing the first objective with weight (0,1) the
result of optimal solution is (x; =0, x, =6) with
optimal objective values (f; = 15,f, = 21), the
second objective results in the optimal solution
(x1 =8, x5 =2), the unique optimal solution (f; =
25, f, = 31), and the third objective with weight
(1,0) the results of optimal solution (x; =10,
x, =0), the objective values (f; = 25, f, = 30), itis
clear from the results the weight of second objective
dominates the weights of first objective and third

objective, so the second objective with point (x; =8,
xy =2) and (f; = 25,f, = 31) is optimal for 1%
problem. As shown in Fig 1 B. 1% problem the point
(25,31) in feasible objective space is dominates all
points.

According to results are obtained from Table 4.

using upper for lower rough interval 2" problem, it
is noticed that the objective results in the optimal
solution (xq =16.67, x, =4.44) the unique optimal
solution (f; = 63.33, f, = 59.44), as shown in Fig
2 B. of 2 problem.

Table 4. Results obtained from solving WSM provide optimal solutions for 2™ problem.

Weight Composite’s Optimal solution Optimal objective Optimal
w = (Wq, W) objective (%1, x3) value (f4, f2) Composite’s
objective
(0.0,1.0) 2.5x; + 4x, (16.67,4.44) (63.33,59.44) 59.44
(0.1,0.9 2.55x; + 3.9x, (16.67,4.44) (63.33,59.44) 59.83
£  (0.208) 2.6x; + 3.8x, (16.67,4.44) (63.33,59.44) 60.22
g (03,07 2.65x; + 3.7x, (16.67,4.44) (63.33,59.44) 60.61
g (0.4,0.6) 2.7x, + 3.6x, (16.67,4.44) (63.33,59.44) 61
g, (05,05) 2.75x; + 3.5x, (16.67,4.44) (63.33,59.44) 61.39
(0.6,0.4) 2.8x; + 3.4x, (16.67,4.44) (63.33,59.44) 61.78
(0.7,0.3) 2.85x; + 3.3x, (16.67,4.44) (63.33,59.44) 62.17
(0.8,0.2) 2.9x, + 3.2x, (16.67,4.44) (63.33,59.44) 62.56
(0.9,0.2) 2.95x; + 3.1x, (16.67,4.44) (63.33,59.44) 62.94
(1.0,0.0) 3x, + 3x, (16.67,4.44) (63.33,59.44) 63.33
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Figure 2. Feasible of WSM for 2" bound lower rough interval (2" problem):
A) decision space, B) objective space.
The results obtained from 3™ problem, is the 20.83, f, = 34.17), Fig. 3 B. explains feasible
best results were at the weight is (0,1) the objective objective space and the point (f; = 20.83,f, =
results in the optimal solution (x; =11.67, 34.17) is dominated for all points, as shown in Table
x, =1.67) the unique optimal solution (f; = 5.

Table 5. Results obtained from solving WSM provide optimal solutions for 3* problem.

Weight Composite’s Optimal Optimal objective ~ Optimal Composite’s
w = (W, W) objective solution (x4, x3) value (fq, f2) objective
(0.0,1.0) 2.5%; + 3x, (11.67,1.67) (20.83,34.17) 34.17
(0.1,0.9) 2.4x; + 2.9x, (11.67,1.67) (20.83,34.17) 32.85
= (0.2,0.8) 2.3x; + 2.9x, (11.67,1.67) (20.83,34.17) 31.67
% (0.3,0.7) 2.2x; + 2.7x, (11.67,1.67) (20.83,34.17) 30.17
o (0.4,0.6) 2.1x; + 2.6x, (11.67,1.67) (20.83,34.17) 28.83
ED' (0.5,0.5) 2x, + 2.5x, (11.67,1.67) (20.83,34.17) 27.50
® (0.6,0.4) 1.9x; + 2.4x, (11.67,1.67) (20.83,34.17) 26.17
(0.7,0.3) 1.8x; + 2.3x, (11.67,1.67) (20.83,34.17) 24.83
(0.8,0.2) 1.7x, + 2.2x, (11.67,1.67) (20.83,34.17) 23.50
(0.9,0.1) 1.6x; + 2.1x, (11.67,1.67) (20.83,34.17) 22.18
(1.0,0.0) 1.5x, + 2x, (11.67,1.67) (20.83,34.17) 20.83
E B (20,30
3 (20.8925,34.1655) -
A ; (19.999,332
25
5 .
15
o
5
Feasible decision space (11.6667,1.6667) (‘i 0 ; ; .

F1

15 1714
X1 1333

Figure 3. Feasible of WSM for 1% bound upper rough interval (3"problem):
A) decision space, B) objective space.
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Optimizing the first objective for the 4" problem
with w = [0,1] the optimal solution is (xq =11.77,
x =3.53) with optimal objective value (f; =
53.53, f; = 64.71), and optimizing second objective
with w = [1,0] the results of optimal solution
(xq =16., x, =0) the unique optimal solution (f; =

56, f, = 64), it is clear second objective dominates
the weight of the first objective, so the point
(xq =16., x, =0) with (f; = 56, f, = 64) is optimal.
So as shown in Fig 4 B., all results of 4" problem are
explained in Table 6.

Table 6. Results obtained from solving WSM provide optimal solutions for 4™ problem.

Weight Composite’s Optimal Optimal objective  Optimal Composite’s
w = (wq, W) objective solution value (f1,f2) objective
(x4, x2)
(0.0,1.0) 4%, + 5%, (11.77,3.53) (53.53,64.71) 64.71
(0.1,0.9) 3.95x, + 4.85x, (11.77,3.53) (53.53,64.71) 63.61
(0.2,0.8) 3.9x, + 4.7x, (11.77,3.53) (56,64) 62.47
(0.3,0.7) 3.85x, + 4.55x, (16,0) (56,64) 61.60
(0.4,0.6) 3.8x, + 4.4x, (16,0) (56,64) 60.80
(0.5,0.5) 3.75x, + 4.25x, (16,0) (56,64) 60.00
e (0.6,0.4) 3.7x, + 4.1x, (16,0) (56,64) 59.20
k5 (0.7,0.3) 3.65 + 3.95x, (16,0) (56,64) 58.40
8 (0.8,0.2) 3.6x; + 3.8%, (16,0) (56,64) 57.60
= (0.9, 0.1) 3.55x, + 3.65x, (16, 0) (56, 64) 56.80
< (1.0,0.0) 3.5x; + 3.5x, (16,0) (56,64) 56.00
Xi o (53.4716,64.705) (56,64)

Feasible decision space

X1 1

(35,500

F1

Figure 4. Feasible of WSM for 2" bound upper rough interval (4" problem):
A) decision space, B) objective space.

As a result, it’s difficult to use WSM when the DM
is unable to determine the weights for each problem
as shown in Tables 3,4,5,6; also, this WSM method
is limited because it deals with one type of objective
function (Max or Min). Thus, when using this
method, it is necessary to make all objective
functions in one type.

Solving Example Problem 17 Using Proposed
Model RIMODNP:

To apply RIMODNP for problem 17, to provide the
problem with the data: Input Unit prices of resources
are P, = ([05,0.65], [0.4.0.75]), P, =
([0.3,0.4],[0.35,0.5]) , P3=([0.4,0.5],[0.45,0.6]), and
the initial budget B=([40,55],[50,65]).

The RIMODNP problem 17 is formulated as the
following:

Max f; = ([2.5,3],[1.5,3.5])x; +
([2.5,3],[2,3.5])x, (profit)
Max f, = ([3,2.5],[2.5,4])x; + ([3.5,4],[3,5Dx,
(quality)
s.t. ([3,3.5],[2.55])x, + ([2.5,3],[2,4])x, < b1
(raw materall)
([2.5,3],[2,4]) x; + ([3,3],[1.5, 4]) x, < b2
(raw materal2)
([1.5,2],[1,2.5]) x; + ([3.54],[3,5]) x, < b3
(raw materal3),x;,x, > 0 17
([0.5,0.65],[0.4.0.75]) b, +(]0.3,0.4],[0.35,0.5]) b, +
([0.4,0.5],[0.45,0.6]) b3 <([40,55],[50,65])
X1,%X3 =0
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x; : represent product 1, x, : represent product 2.
Step 3: To solve problem 17, the problem can be

converted into two sub-problems (interval multi-

objective de novo programming (IMODNP) as
shown in Table 7:

Table 7. Convert RIMODNPP into two sub-problems Lower and Upper interval.

IMODNP/ Lower

IMODNP/ Upper

Maxf =[2.5,3]x; +[2.5,3]x;
Maxﬁ =[3,2.5]x; + [3.5,4]x,
s.t.
[3, 3. 5]x1 + [2 5, 3]x2 < b1
[25,3] x1+ [3,3]x2 < bz
[1.5,2]x1+ [35,4] X3 < b3
[0.5,0.65] b, +[0.3,0.4] b+ [0.4,0.5] b5 < [40,55]
X1,X2 >0 18

Max fU = [1.5,3.5]x; + [2,3.5]x,

Max fY = [2.5,4]x; + [3,5]x,

s.t.

[2.5,5]%, + [2.4]x, < b,

[2.4]x,+ [15, 4]x, < b,

[1,2.5] x,+ [3,5] x, < by

[0.4.0.75] b+ [0.35,0.5] b+ [0.45,0.6] bs < [50,65]
X1,%X =0 19

Step 4: The IMODNP problem 18 is converted to
MODNP problems 20 and 21. Also, the IMODNP

problem 19 is converted to MODNP problems 22 and
23, as the below Table 8, Table 9, respectively.

Table 8. Convert IMODNP into two sub-problems IMODNP for the lower interval.

1%t bound of lower rough interval

2" hound of Lower rough interval

Max f§ = 2.5x; +2.5x;

Max f} = 3x; + 3.5x,

s.t.

5x1 + 4x2 < bl

4x,+4x, < b,

2.5 x1+ 5 X2 < b3

0.75 by + 0.5 by+ 0.6 by < 40

) xlyxz 2 0 20

Max f = 3x; + 3x,
Max f; = 2.5x; + 4x,
s.t.
2.5%; + 2x, < by
2x,+1.5x, < b,
x;+3x, < by
0.4 b, + 0.35 b, + 0.45 b; < 55
, X1, % =0 21

Table 9. Convert IMODNP into two sub-problems LMODNP for the upper interval.

1%t bound of Upper rough interval

2" bound of Upper rough interval

Max ft = 1.5x, + 2x,
Max f} = 2.5x; + 3x,

s.t.

3.5x1 +3x, < by

3x,+3x, < b,

2xq+4x, < by

0.65 by+ 0.4 by+ 0.5 by < 50
X1,X2 20 22

Max fU = 3.5x; + 3.5x,

Max f = 4x; + 5x,

s.t.

3x; + 2.5x, < b;

2.5x%;+3x, < b,

1.5 x,+ 3.5 x, < by

0.5 by+ 0.3 b,+ 0.4 b, < 65

X1,%X3 =0 23

Results obtained by Zeleny’s approach (Structure
Design) for problem (RIMODNP):

Step 5: Calculating optimal system design for 1%
problem 20 represent (1 bound of lower rough
interval) using problem 2, solve problem 20:

Max ff = 2.5x; + 2.5x,
Max ff = 3x; + 3.5x,

S.t.

5x; +4x, < by

4x,+4x, < b,

25x1+5x5 < b3

0.75 b;+ 0.5 b,+ 0.6 b3 < 40

X1,X, =0

Take a budget constraint and replace b, , b, , b; With
constraints of problem as the following:
0.75(5x1 + 4x, ) + 0.5(4x; + 4x,) +
0.6(25x;+ 5x,) <40 easily the
constraint was gotten as follows:

budget
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7.5x, + 8x, <40 24
To find }_flL with respect to given budget equal 40, let
x2l =0, where

E%L = 5 and the value of f* = 12.5, to obtain of the
value of resources, the values are substituted of
(x2L =0, x3L = 5) in constraints of problem 20:
bl=5%x0+4x5=20

bl =4x0+4x5=20

bt =25x0+5%5=25. so, the value of B3L
using budget constraint 24 as follows:
BiL =17.25%0 + 8*5 = 40,

as well as for x3t = 5517 when x2L =0, so ff =
16.552, and then substitute the values in constraints
of problem 20:

b} =5%5517+4 %0 = 27.585

by =4x5517 +4 %0 =22.069

by =25%5517+5%0 = 13.793.

So, the value of B? obtained from budget constraint
24 as follows:

B#L =7.25%5.517 + 8 * 0 = 39.998). The rest of
results is as shown in the Table 10.

Table 10. Results obtain Zeleny’s approach (structure design) for problems 20,21,22,23.

Optimal System Design

g - xit 5 x2L 5.517
229 by 20 bt 27.585
s E £ b, 20 bk 22.069
S5 bs 25 bt 13.793
39¢ 1L 2
g2 f2 12.5 fi 16.552
7, Bl 40 B2 39.998
B- 40
Optimal System Design
g _ x1U 20.561 x2V 25.582
Se& by 41122 by 63.954
5 E g b, 30.841 bY 51.163
2cs by 61.682 bY 25.582
8 g 9 1U 2U
33& fz 82.243 fi 76.744
£} B 55.00014 B2 55.000014
BY55
Optimal System Design
C % 9.7087 %t 11.173
[T —L —L
§ S . 29.126 b; 39.106
8¢ b, 29.126 by 33.520
= %% b. 38.835 by 22.346
>
B2 [ 19.142 £ 27.933
- B, 49.9998 B 50.0001
B" 50
Optimal System Design
- X" 18.3099 72U 22.807
[«5)
3., by 45.775 by 68.421
D C — —
5E¢ by 54.929 by 57.018
Ecs by 64.085 by 34.211
B3 7 64.085 7l 91.228
~ B, 65 By 64.99995
B 65
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From Table 10, it is clear from the results obtained
that it gives one optimal system design for each
bound. In spite of get an optimal result, little
alternative was found to provide to the DM. these
results are in agreement with the results obtained by
Zeleny approach®®.

Step 6: After getting the results from solving
problem 20, find the 1% bound of lower rough
interval (ﬁ = 12.5,]:2L = 16.552) with budget 40,

Meta-optimum solution can be easily found
depending on problem 5 to solve problem 20 as
follows:

Min Bl =75x, + 8x,
st25x; + 25x, > 125
3x,+ 3.5x, = 16.5516,
25

using computer software POM- QM Windows V5 to
solve the problem 10b, the results are as follows:
x*l = (6.6206,0), f*L=(16.552, 12.5), b*l =
(33.103,26.482,16.552) , B*L =4799935
where, the value limits the minimum budget to
realize f*L through solutions x*~ and b*L. The given

budget level Bl = 40 < B*L = 47.99935.

The optimum-path ratio for implementing the best
achievement for given budget B is defined as in

X1,% 20

Table 1, the optimum-path ratio % = % with 0 <
a; <1, Yai=1, where represented a; = a, =
0.5 respectively. the rk =
(o B3+a,B?#=39.99985)/47.99935)) = 59.99%. so
that can be found the values of Table 1.

Step 7: To find Synthetic optimum solution (x** is
solved for j"single criterion DNP and obtain solution
{x}, X2 x3, ...} form optimum solution system
design, get the values as follows:

x**L = (5.517,5), take the values and substitute in
constraints of problem 20 get the values of resources
according to the formula b*l =Ax*l =
(47.586,42.069,38.793), so that substitute in

objectives of problem 14 obtain to f*** = Cx™" =
(26.293,34.052) , and then, take the budget
constraint 24 and substitute the values x**L by the
value of budget is B*L =Vx*L =179.9997,
applying to the rest of problems 21,22,23.

Step 8: According to the Theorem’s Shi, that means
xKL is feasible solutions for problem 14, where the
results in the above Table 7. refer to BL > Bf: =
40,VxKt < B, this implies BF: < BL =40 for
problem 20, so B*: =47.99935 > B- = 40, that
refer to the Meta-optimum solution x* is feasible
for problem 20. Finally, B**L = 79.9997 > B*L =
47.99935 that’'s mean both solutions x*L=
(6.621,0)and x**L =(5.517, 5) are feasible for
problem 11 and so on for the rest of the problems.
Step 9: Test bounds of rough interval for objectives
fand resources b for problem 20,21,22,23, the
results as shown in Table 9.

fi =125, f# = 16552
fU=82243, fJ=76744
— —L
f, =19.142,  f, =27.933
—1U —U
f, =64.085 f, =91.228

(ff, A7) = (125, 82.243), itis surely optimal
range.
—L —1U . .
(fy, f1 ) =(19.142, 64.085), it is possibly
optimal range.

L U —L —=1U
[(EL »J1 )' (fl'fl )] = [( (125:
82.243),(19.142, 64.085)] is the rough optimal
range.
(ff.f7) = (16.155, 76.744) itis surely optimal
range.
(o o) = (27.933, 91.228) it is possibly
optimal range.

L rU —L =U
[iZ l£2 )l (lefz )] = [ (16155r
76.744),(27.933, 91.228)] is the rough optimal
range.
(b} =20, bY =41.1216), it is surely optimal range.
(by =29.126, b, =45.775,) , it is possibly optimal
range.

—L —U

[(b} =20, bV =41.122), (b, =29.1261, b,
=45.775)], is the rough optimal range.
(b% =20, bY =30.8412), it is surely optimal range.
(E; =29.126, Eﬁ’ =54.929), it is possibly optimal
range.
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[(b% =20, bY =30.841), (by =29.126, by =54.929)],
is the rough optimal range.

(b% =25, bY =61.682), it is surely optimal range.
(b, =38.835, by =64.085), it is possibly optimal
range.

[(bL =25, bY =61.682), (b= =38.835, by =64.085)],
is the rough optimal range.

It is clear that the results of problems are an

optimal solution because of the achieved properties
of rough interval of proposed model, that means the
proposed model to RIMODNP is able to solve
problems under uncertainty conditions.
Step 10: The six types optimal path-ratios are
calculated to find the optimum system design using
the following formulas of Table 1. Table 11 explains
the results of three ratios for each problem as shown
below:

Table 11. Results of Optimum-path ratios for problems 20,21,22,23.

Bounds of rough interval
for objectives problem

Ratios

15t Bound of Lower N B*L .
Rough Interval-Problem r-= BT = 59.99%
20 =

2" Bound of Lower Bt

Rough Interval-Problem 7' = —— = 57.54%
21

1t Bound of Upper B*U .
Rough Interval-Problem L =g~ 61.48%
22 -

2" Bound of Upper 7Y
Rough Interval-Problem  7'Y = —— = 71.14%
23 B

L

B i
— = _50.00019% 3t = 2B _gngq

B - Bt
_ _E:L =50001% 7= Zi_‘ff{L = 50.0006%
r2v Qg*j" =49.99% r3V = Zigj%ju =50%
72U = ;:10 = 50% U = Zi_oi"fgu = 49.99%
B

The optimum system design is calculated for
problems 20,21,22,23 using equations 8,9,10, the
results summarized in Table 12.

Table 12. The results of optimum system design for problems 20,21,22,23 for ratio 1.

Optimal values &
Optimal solution of
problem 20

solution of problem 21

designs

Optimal values & Optimal

Optimal values &
Optimal solution of

Optimal values &
Optimal solution of

x1L = (3.309,2.995)

bl = (28547, 25.237,
23.272)

friL = (15773, 20.428)

ril = 59.99% with using
B*L =47.99935, out of
B**1=79.9997

x1U = (15.727,12.641)
bV = (64.600,
53.650)

F1U = (85.105, 89.882)
r1U=61.48%with using
B*U=67.628, out of
B**Y=110.00015

Designl.for Ratio 1

50.416,

problem 22 problem 23

x'" = (6.429,5.586) x'Y = (16.225,13.026)
b = (39261, 36.046, b = (81239, 79.639,
35.204) 69.927)
F=(208164,32.8318)  f, =(102.377,130.028)
7= 57.54% with using 7'V=71.14% with using
B'"=57.542, out of B"=92.483, out of

B "=99.99875 B =130

Design under ratiol 1% Bound of Lower Rough
Interval-Problem 20, After obtaining the values of
ratios as shown in the Table 12, the first ratio is taken

*L
riL = B
— B**L

ratio for achieving the synthetic optimal performance
f1L = (26.293, 34.052) related to a given meta-

= 59.99% represent the optimal path

optimal budget level B*L= 47.99935, optimal system
design under Ratiol is as follows: optimal solutions
for (productl and product2) are (3.310,2.999)
respectively, bt resources of raw materials are
(28.547, 25.237, 23.272) respectively, also the
optimal values of maximization (profit and quality)
are (15.773, 20.428), all results of 1% Bound of
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Lower Rough Interval-Problem 20 under budget
Bl =40.

And so on for problem 21 under same ratio the design
is as follows:

For the second bound of lower rough interval
the first ratio is taken r1U= 61.48%, optimal system
design under Ratiol equal 57.54% is as follows:
optimal solutions for (productl and product2) are
(15.727,12.641) respectively, b1V resources of raw
materials are (64.600, 50.416, 53.649) respectively,
also the optimal values of maximization (profit and
quality) are (85.105, 89.882), all results of 2" Bound
of Lower Rough Interval-Problem 20 under budget
BU =55,

So is the problem 22 Optimal system design under
Ratiol equal 7= 57.54% is as follows: optimal
solutions for (productl and product2) are

(6.429,5.586) respectively, ElL resources of raw
materials are (39.2609, 36.046, 35.204) respectively,

also the optimal values of maximization (profit and
quality) are (20.816, 32.832), all results of 1% Bound
of Upper Rough Interval-Problem 22 under budget
B" =50,

Design for Ratiol 2" Bound of Upper Rough
Interval-Problem 23, Optimal system design under

Ratiol equal 7= 71.14% is as follows: optimal
solutions for (productl and product2) are

(16.225,13.026) respectively, blU resources of raw
materials are (81.239, 79.639, 69.927) respectively,
also the optimal values of maximization (profit and
quality) are (102.377, 130.028), all results of 2™
Bound of Upper Rough Interval-Problem 23 under
budget

—U

B =65.

The results of ratios (2,3) can be summarized as in
the Table 13.

Table 13. The results of optimum system design for problems 20,21,22,23 for ratios (2,3).

= Optimal ~ values & Optimal values & Optimal  Optimal values & Optimal values &
é ¢ Optimal ~ solution  of solution of problem 21 Optimal solution of Optimal solution of

problem 20 problem 22 problem 23
o X =1(2759,25) x?V =(12.788,10.278)  ¥*' = (5.587,4.855) x> = (11.4035,9.155)
2 b2l = (23.793, 21.034, b2V = (52527, 40.994, EZL = (34117, 31.324 EZU = (57.098, 55.974
8 19.35)7) 43.623) 30.591) 49.148)
s f7%0=(13.147,17.026) f2V =(69.199, 73.084) —2L —2U
L2l = 50.00019%With L 2u_ 49 99oswith using sz =(18.0889, 28.5301) f2 = (71.955, 91.389)
S using B =40, out of pBU—g5 outof "= 50.001% with using ?: = 50% with using
‘2 B"=79.9997 B*U=110.00015 B =50, out of B =65,outof B =130
D - —kk

B'"=99.99875

x3 = (2.759,2.5) x*Y =(12.791,10.281)  ¥*' = (5.587,4.854) ¥V = (11.403,9.154)
™ 23L = (23.793, 21.034, Q3U = (52.5375, 41-002, E3L = (34 117 31 323 E3U: (57 0968 55 9725
o 19.397) 43.6319) T T ' T '
2 30.591) 49.147)
8 [t =(13147,17.026) [ =(69.213, 73.008) L _ (18,089, 28,529 P _ 1 oes o1 387
5 13l = 50% with using 73Y=50%with using }_C3L__5(0 0'0060’/ .'th ) ]_C3U__4(9 9'9(y ’ _th' _)
' a,Bl"+a,B}'=30.99985 a,BIV+a,B3=55.000075 Gsin‘g AU TS i using
S ,outof B**-=79.9997 ,out of B**U=110.00015 L _aL a;B; +a,B, =64.99997
'z a;B; +a,B, =49.99993 5 out of B**Y=130
- 5outof B =99.99875

From Table 13 , it is found that all solutions under
each ratio gives an optimal system design, meaning
that this method is the most efficient method when
compared with other methods, because it gives more
flexibility for DM by choosing suitable alternative, it
gives twelve alternatives while the other methods

give four alternatives for each one. These results are
confirmed by?.

After obtaining the results from each method can be
described separately, as shown in Table 14.
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Table 14. Described of methods for solving proposed model.

Method Right hand of constraints Model usability Results The number of optimal
b; system designs

WSM b;: resources right hand Before  formulation Select one solution Four optimal solutions,
side of constraints are proposed model from the set of butnot re-designable
Known and fixed. RIMOP. feasible solutions.  system.

Zeleny’s b;: resources hand side of after formulation All solutions are Four optimal solutions,

approach constraints are unknown proposed model optimal. but re-designable
and variable. RIMODNP. system.

Optimal b;: resources hand side of after formulation All solutions are Twelve optimal designs

path-ratios  constraints are unknown proposed model optimal. for the three ratios used,
and variable. RIMODNP. and the system can be

redesigned.

From the results, we concluded that WSM is useless
to use, especially when the conditions are
uncertainty, because it is not possible to control re-
allocation resources or improve the current system.
And also, it’s noted that the optimal path-ratios

Conclusion

In this paper, an ideal resource allocation system
under conditions of uncertainty is designed using the
proposed model to reconfigure the possible
combination to obtain the optimal combination of
resources that produce a system with no or minimal
waste. The optimal system design of the proposed
model is obtained by solving in three ways: WSM,
Zeleny approach and optimal path -ratios method.

The first method (WSM) gives one result among a
set of feasible solutions (ideal system design) under
each level of problem can’t improve RIMOP, the
second method (Zeleny’s approach) gives one
optimal system design under each level which can be
improved by redesigning, while the third method
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