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Abstract

In this research, the two-dimensional parabolic integral-differential equation was solved using one of the
numerical methods, which is the finite element method (Galerkin) on triangular elements. This method was
chosen to make extensive use of finite elements because it has many high-quality numerical properties. The
main benefit of finite elements is their ability to solve a wide range of problems in different computational
fields in different forms, especially complex ones that cannot be solved by other numerical methods. Given
the semi-discrete error estimates for the normal space H?, the polynomial linear boundary element space
defined in triangles was used to describe space and the inverse Euler method was used to describe time.
The discriminant rules used to differentiate the Volterra integral term are also chosen to be compatible with
time phase diagrams. In addition, the numerical solutions of the two-dimensional differential integral
equation of the equivalent type are compared with the exact solutions, and finally the final results of the
solutions are displayed graphically using MATLAB. Finite element Galerkin error analysis was taken into
account when using a mesh of triangular elements on the differential equation in two-dimensional space.

Keywords: Backward-Euler, Parabolic Integro-Differential, Quadrature procedures, Two-dimensional,

Volterra integral term.

Introduction

The following linear PIDEs are discussed in this

article: p(x,0) = uy(x), x € Q. 3
ap : Here, Q € R? be a smooth-bordered bounded
E(x, t) +Ap(x,t) = _[B(t' s)p(x,s)ds domain 49, as0 < T < oo. Further, Ap(x,t) =
0 —Ap(x,t),B(t,s)p(x,s) = —V- (B(t, s)Vp(x, s)),
+f(x,t), (x,t) e A% (0,T], 1 V  indicates a spatial gradient and indicates the
Laplacian. Suppose that the coefficient matrix
p(x,t) =0, (x,t) € 00 X [0,T] 2

B(t,s) = {b;j(x;t,s)}is 2 x 2 in L (Q)?*2. Taking
the initial function as a given py,(x) belongs to
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H?(Q) n H}(Q), the source function f (x, t) belongs
to L2(0; T; L*(Q)) and

d
max — b;i(x;t,5) | < o0,
Ox{0ssst<T} | O0x ”( )|

Ordinary differential equations (ODESs), partial
differential equations (PDEs), and integro-
differential equations (IDEs) can all be solved using
the extensive family of numerical and approximation
techniques known as finite element methods
(FEMs). The FEMs are commonly used because they
have many high-quality numerical features. The
primary benefit of FEMs is their ability to solve a
wide diversity of problems in different
computational domains with various shapes. For
instance, finite difference methods (FDMs) can solve
problems on rectangular and triangular meshes,
whereas finite element methods (FEMs) can manage
any geometry. The origins of FEMs can be found in
1940s research by Courant and others that focused
on applying variational approaches to solve
engineering challenges®. In the 1950s and 1960s,
engineers used FEMs to solve and approximate a
wide variety of problems in engineering
applications. Beginning in the late 1970s, the FEMs'
strong mathematical underpinning was established.
A massive number of research papers, books, and
monographs about FEMs and their applications have
been published in the literature since the 1980s2.

Heat conduction in memory materials®, compression
of poro-viscoelastic media*, nuclear reactor
dynamics®, biological epidemic phenomena®, and
medication absorption and release’ are just a few
examples of the many physical situations in which
parabolic integro-differential equations (PIDEs)
develop. You may find pre-existing and novel
solutions to these types of issues in®*2,

Various techniques, such as spectral methods, spline
and collocation, the method of lines, and finite-
element techniques!?®®, have been devised to
numerically solve such equations. Also finite
difference®®, Hybrid'’ and Least-Squares'® methods.
The finite-element method (FEM) stands out as a
promising option because it can be applied to non-
regular,  higher-dimensional ~ domains, and

convergence analysis for such problems already
exists. In®, the authors used FEM to solve parabolic
integral differential equations and studied a
posteriori error analysis for space-time discretization
of the equation in a bounded convex polygonal or
polyhedral domain. The piecewise linear finite
element spaces are used for space discretization,
while the Crank-Nicolson method is used for time
discretization. Utilizing nested finite element spaces
and the standard energy technique, the proposed
method yields an optimal order error estimator for
the norm. A standard energy technigue coupled with
a duality argument is used to derive an error estimate
of order for the semi discrete solution when the given
initial function is only in time, and?® proves an error
estimate of order uniformly in time. A posteriori
error estimates were determined by Reddy and
Sinha?! in 2015 for the linear parabolic integro-
differential equations in a bounded convex polygonal
or polyhedral domain using the semi discrete and
implicitly completely discrete backward Euler
technique. An important use of the Ritz-Volterra
reconstruction operator is to provide optimum order
a posteriori error estimates in and -norms, using the
linear approximation of the Volterra integral
component. Additionally, the associated a posteriori
error estimates for the reconstruction error of Ritz-
Volterra are determined. Shaw and Whiteman
investigated a space-time Galerkin finite element
discretization of the linear quasistatic compressible
viscoelasticity problem described by an elliptic
partial differential equation with a Volterra
(memory) term in?2,  Utilising  Galerkin
"orthogonality" and the data stability of a related
discrete backward problem, they obtained an a priori
maximum-energy Galerkin-error estimation.

The article's reminder is structured as follows: In
Section 2, the weak formulations are described. In
Section 3, the discretization is designed. The
numerical scheme of the semi-discrete is discussed
in Section 4. The semi-discrete scheme error
estimates are obtained in Section 5. In Section 6, the
scheme of Backward-Euler is described. In Section
7, a numerical example is given to demonstrate our
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theoretical analysis. A simple summary of our work
is mentioned in the last section.

Everywhere in this article, ¢ will stand for a
universally positive constant that is independent, and
h the same time, important integral inequality is
introduced.

t T ¢
fjld)lz dsdr < cfl(j)lz ds, 4
00 0

where ¢ is an integrable function in [0,t], t €
[0, T].

Weak Formation

Given a Lebesgue measurable set Q, Lebesgue
spaces are denoted by LP (), 1 < p < co. The inner
product <-,->. is equipped in the space L?(2) when
p = 2. Using the conventional notation for Sobolev
spaces W™P(w) with 1 <p < oo- for an integer
m > 0. Sign to W™2(Q) by H™(Q) when p = 2.
The function space H(Q) is composed of the
elements H1(Q) that disappear at 0Q. The boundary
values in this case this should be interpreted as a
trace, and the norm in L? = L2(Q) is [I-ll, while in
H™ = H™(Q) it is |I"ll,y.

The differential equation is always rewritten as a
variational equation to begin the derivation of a finite
element method. This so-called variational
formulation is created by multiplying equation Eq 1
by a test function v € H3(Q) and using Green's
formula. The variational problem is what get here:
Find p: [0, T] — HJ () where, for all t € (0,T]

t
0
a—?zvdx +a(p,v) = fb(t, s;p(s),v)ds
Q 0
+ f fvdx Vv € H} (Q), 5
Q
p(-,0) = po.
Where

a(p,v) = (Vp,Vv) Vp,v € HE(Q)

and

b(t,s;p(s),v) = (B(t, s)Vp(s),Vv) Vp(s)
,v € H3 ().
Discretizations using Galerkin

First, some definitions of projection and its
characteristics are given. Let X, indicates a uniform
division of Q into overlapping triangles K of
diameter K, so that O = Uger, K every pair of
triangles intersects either at a vertex, along an entire
edge, or not at all; also, no triangle's vertex is located
inside the side of another triangle's interior. Let V},
represent the H}(Q) finite dimensional subspaces
described by

Vi = {v, € Hy(Q); vplx € P1(K) VK € Xy}

Where P; is the space of polynomials of degree at
most 1, and 1}, satisfy the following inverse property

inf {llv—vpll + hllv —vpll } < CR?IVII%,
VREVH

VveEH?NnH, 6
Numerical Scheme of the semi-Discrete

First, consider the problem of finding semi-
discrete py:[0,00) — V, such that

(ph,t: Uh) + a(pp, vp)

t
= f(b(t,s, ph(S),Uh) ds + (f, Uh), A4 Vn € Vh 7
0

In%, the existence results are covered in detail. Please
see 24 for outcomes, regularity results, and stability
results in?® such problems. Now a numerical chart is
displayed. Let v, =span {@;}}*.; Then, any p, €
V;, have the following expression:

N
Pn = Zpi Pi,
i=1
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Choosing v, = ¢;,j = 1,2,...,N in (6), then Eq.6
can be expressed in the matrix form as shown below:

t
AP, + BP = f QP(s)ds + F. 8
0

Where

a=(p@¥@)

NXN

B = (Voi(o, V)

NXN

Q = (Bt s)Voi(0), Vip; (),

NXN
F= (f’ lpj)le'

P = (p1, P2, 03 woDn)"
The Semi-Discrete of Error Estimates
In this paragraph, Galerkin finite element method
error estimates used in this article are presented. The
following projection operator is required to acquire

the error estimates: LetIl,: H3(Q) — V), s the
standard Ritz projection defined by

a((p — Mpp), vh) =0, Vv,€V, 9

The following outcomes are well known to hold
21

lp — Oppll + Allp — Tppll; < Ch2Ipll,. 10

Errors were analyzed as follows to obtain prior
error estimates:

p—pop=@—-Tpp)+{pp —pp) =p +6.

Applying Eq 4, Eq 6 and supporting projection
Eq 8, the error equation is obtained in 8 as

On,vn) +a(@,vy) = —(pg, vp)

t

+ f (b(t,5:0(5), v ds,

0

Vvh EVh. 11

Now, it is shown how p — p,, error estimates
are made.
Theorem: Suppose that p(t) with p;, (t) € V,, are the

solutions of Eq 6 and Eq 10. respectively, then for
each T > 0 there is a constant Cy, therefore

T
I —pn Il < < Ch| lIpll, +hf||pt||zdt
0

Proof: Estimate p of can be obtained from Eq 9, to
estimate 6. We set v, = 6 in Eq 10 and obtain

(6:,0) +a(6,0)

t
= —(p:, 0) + f(b(t, s;6(s),0)ds 12
0

Using the Schwarz inequality, then Eq 12 it
becomes

d 2
2 10117 +a(6,0) = = (o1, )

N[ =

t

+[ 050,00 ds 13
0

Taking this equation's integral from 0 to ¢t and
ellipticity of a
lo(m)IIE

T T
+f||e||%dr <c( ez +f||pt||1
0 0

T t
'|I9||1dt+ffll9(5)||1ll9(t)ll1 dsdt 14
00
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216(DIIF < ¢ { 1600113 +f||pt|I1 |10l dt ey < ¢ f”ptllldt 20
0 0
Tt From Eq 10 obtaining
+[ [1o@e@ldsae | 15
00

T
16Dl < € f loe Il dt
0

T
eIz < ¢ 11e0)IIF +f||pt||1 1161, dt
0

T
< Ch? fllptllzdt 21
T t 0
+[ [1o@ile@i dsae | 16
00 Then, by the triangle inequality
Noting that 8(0) = 0, these yields lp —prnlli = llp = pp + Upp — pr 1

r < lp = Weplly + 10ep — alls
1emI2 < ¢ fuptnl 1161l de
0

< llplly +1161l1
T t T
+ff||e(s)||1||e(t)||1 dsdt 17 < Chllpllz + Ch? fllptllzdt
00 0
Using Eq 4 with a suitable choice of ¢ for the ‘
double integral, getting < Ch{ lIpll; + hfllptllzdt 22
0
T
eIz <c j||Pt||1 - 116]l,dt Here, the proof is complete.
0

Scheme of Backward-Euler

The partition of [0,T]be 0 = t; < t; << t, <
<tN=T Wlth At=tn_tn_1 y n:1,2,...,N
indicate a time grid. Therefore, the fully discrete
backward-Euler scheme can be written as follows:
find p™ € HE(Q) N {v ={wec@:v|x €

P, VK € xh}}, n € [1: N], where

t
+f||9(s)||%dt 18
0

T
16N, < ¢ j loelldt
0

t
+f||9(s)||1 dt 19
0 <pn _pn—l

AL ,v> +a(p™,v)

In order to solve the above equation using

Gronwall inequalities %6, one must
a = 6n(b(t”;p, v)) +(f"v), YveV 23
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if the left rectangular rule is used to discretize
the integral term, or

s™(b(t™;p,v))

n—1
= (Z T141B(tn, t)Vp(t;), V), 24
j=0

and, if one applies the right rectangle rule, to
have

6"(b(t";p, v))

n
= (z 7;B(tn, t;)Vp(t;), Vv, 25
j=1
and
a(p™,v) = (Vp™,Vv). 26

As a result, the discrete problem Eq 6 is: pj; €
Vi

PR —Pr
(T'Uh + a(p;:'vh) =
M (bt prvn)) + (fh o), €V 27

find pj = ?’Llpn(wj, tn)d)j(x) € R™ and
vy, = @; where after simplify, getting

| =

h =

0.6 [

02

02l

04l

osl

o8l

(M + AtA)p™ = Mp™ 1 + +Atb™ + (At)?
A(B(tnr tO)pO +B(tn: tn—l)pn_1) 28

where M is a mass matrix, A is a stiffness
matrix and b™ is a load vector.

Ilustration Example

The purpose of this section is to provide an
illustration to demonstrate the theoretical side
discovered in the previous section. Suppose that Q =
[—1,1]%\[-1,0] x [0, 1] is the L-shaped domain
and T = 0.1. The exact solution u(x, y,t) and fours
function f (x, t) for (1) are selected as

-m?t

u(x,y,t)=e sin(mx)sin(my),

flx,y,t) = (1= 2t)m?u(x,y,t)

and

B(t,s) = e(_nz(t_s))

This is a kernel that appears in various contexts in
several of the older references. The exact numerical
solutions and H? error of the GFEM Eq 27 is shown
in Table 1 at At =.00125, the convergence rates of

the GFEM Eq 27 are shown in Table 2. Fig 1 depicts

the grid levels at h = 11l loandT= 0,1. In

5’10’20’ 40
Figs. 2, 3, and 4, the exact and numerical solution are
shown at h = % % % respecting, In Fig 5, the
error of the GFEM Eq 27
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. . 11 1 1
Figure 1. The levels of gridat h = S 70" 20’ 20"
The exact solution The numerical solution

Figure 2. The exact and numerical solution at h = %

The exact solution The numerical solution

Figure 3. The exact and numerical solution at h = 1—10
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The exact solution

The numerical solution

Figure 4. The exact and numerical solution at h = %

0.1

0.109 |-
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0.107
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Error

0.105 [

0.104 -

0.103 [

0.102 -

0.101

108P1/h)

80

Figure 5. Error of the GFEM Eq.27.

Results and Discussion

Table 1. The exact, numerical solutions and H! error of the GFEM Eq 27.

h N The exact The numerical The error
1/5 258 2.6304e-01 3.7013e-01 1.0709e-01
1/10 978 3.7269e-01 2.7139e-01 1.0235e-01
1/20 4086 3.7270e-01 -3.7261e-01 1.0061e-01
1/40 16,406 3.7271e-01 2.7212e-01 1.0059e-01
1/80 66,142 3.7271e-01 2.7226e-01 1.0045e-01
Table 2. Convergence rates of the GFEM Eq 27
h N Rate
1/5 258 6.5313e-02
1/10 978 2.4737e-02
1/20 4086 2.8682e-04
1/40 16,406 2.0093e-03
Conclusion

In this article, GFEM error analysis was considered
when using a mesh of triangular elements on the
PIDE in 2D. Utilizing piecewise linear finite element
space on triangles and the backward-Euler method

for space and time discretization, respectively. The
optimal order error constraints are obtained in the
H' —norm. The associated convergence rates are
shown in Table 2. Observations indicate that the
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convergence rate is roughly equal to 2. As predicted
by the theorem, these results demonstrate that the
GFEM has optimal order convergence rates for the
unknown function. In our next work, how to apply
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