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Abstract

In this paper, it is proved that if a CO-semigroup is chaotic, hypermixing or supermixing, then the
related left multiplication CO-semigroup on the space of Hilbert-Schmidt operators is recurrent if and
only if it is hypercyclic. Also, it is stated that under some conditions recurrence of a CO-semigroup
and the recurrency of the left multiplication CO-semigroup that is related to it, on the space of Hilbert-
Schmidt operators are equivalent. Moreover, some sufficient conditions for recurrency and
hypercyclicity of the left multiplication CO-semigroup are presented that are based on dense subsets.

Keywords: Hilbert-Schmidt Operators,
Operators, Recurrent Semigroup.

Introduction

Let B(H) be a set of bounded and linear operators
on a Hilbert space H. An operator T € B(H) is
called hypercyclic if h e H exists such that
orb(T, h) be dense in H, that s
{h,Th,..,T"h,..} = H ' Hypercyclicity of an
operator implies for any nonempty open sets U,V <
H, there is n € N such that T™*(U) nV = @ L. If
for any nonempty open set U € H, there isn € N
such that T™™(U) NnU # @, T is called a recurrent
operator 2 Hence, hypercyclicity implies
recurrence. These concepts and related topics are
investigated by many mathematicians. To see a
history of these concepts, one can refer to ®and *.

Another interesting structure that concepts like
hypercyclicity and recurrency investigated on it is a
Co-semigroup. A Cy-semigroup on a Hilbert space
H is a family (T;).»o Of operators on H with these
properties that Ty = I, T;T; = T4 TOrany s,t = 0,
and forany h € H, EL‘% T;h =T.hforanyt =01

Hypercyclic Operators,

Left Multiplication, Recurrent

A Cy-semigroup (T;)¢so IS Said a hypercyclic Cy-
semigroup if orb((T;)¢=o, h) is dense in H for some
h € H. It is well known that the hypercyclicity of a
Co-Semigroup implies that for any nonempty open
sets U,VEH, t>0 can be found such that
TY(U) NV #@ % One can find more about the
hypercyclicity of a C,-semigroup in °. It is proved in
Theorem 2.4 of ! that hypercyclic C,-semigroups
can be found in every infinite-dimensional
separable Hilbert space. Also, one can see & for
more information.

There are some criteria for C,-semigroups. Recall
hypercyclicity criterion (HCC) and recurrent
hypercyclicity criterion (RHCC) given from 0 as
follows. In the following, H always indicates a
separable Hilbert space.

Definition 1: (see %) (HCC) A C,-semigroup
(Tp)¢=o On H fulfills the hypercyclicity criterion if
and only if t > 0 can be found with these properties
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that T,(U) N W # @, and T;(W) NV # @, where W
is a neighborhood of zero in H and U,V € H are
nonempty open sets.

Definition 2: (see °) (RHCC) A C,-semigroup
(T)eso on  H fulfills recurrent hypercyclicity
criterion if and only if for any nonempty open sets
U,V < H and any neighborhood W of zero in H, L,
and L, can be chosen with this property that, q; €
[t,t +L,] and g, € [t,t + L,] can be found such
that forany t > 0
T,(W)NW =@, and T, (W)nV +0.
One can see some relations between HCC and
RHCC in %°,
A Cy-semigroup (T;)¢so ON H is called recurrent if
for any nonempty open set U € H, there is t > 0
such that T/1(U) n U # @ 2 By Definition 1, and
Definition 2, it is deduced that for C,-semigroups,
hypercyclicity implies recurrency. It is proved in
Theorem 5 of 2 that recurrent C,-semigroups can be
found in finite-dimensional spaces, too. If for a
vector h € H, an increasing sequence (t,) exists
such that Ty, h = h, then h is called a recurrent
vector for (T;)¢so 2. The set of recurrent vectors for
(T¢)¢so IS denoted by Rec(T;)¢so- It is proved that
the recurrence of (T:):so iS equivalent to this
condition that (T;):so has a dense set of recurrent
vectors 2.

It is interesting to investigate recurrency on B,(H),
where B,(H) is the algebra of Hilbert-Schmidt
operators. Remind that if a separable Hilbert space
H has the basis {e;} , then

1

Tl = (EZ1 1Teil]?)z.
If ||T]], < oo, T is said a Hilbert-Schmidt operator.
Also, it is interesting to investigate recurrency on
the operator algebra B(H), when H is a Hilbert
space on C, the field of complex numbers, where
H is separable and infinite-dimensional. The norm

Results and Discussion

Main Results

In the beginning, it is proved that the recurrency of
left multiplication semigroup on operator algebra

topology of B(H) is not separable . Also, B(H) is
separable with strong operator topology or briefly
SOT-topology .
A considerable operator on B(H) and B,(H) is left
multiplication. Recall that the left multiplication
Ly:B(H) - B(H) is defined with LS =TS for
any S € B(H). The operator Ly defines similarly on
B,(H). Yousefi and Rezaei proved that the
hypercyclicity of L on B(H) is equivalent to the
hypercyclicity of Ly on B,(H), and equivalent to
this condition that T satisfies in hypercyclicity
criterion for operators on H 2. One can see **and
for some related matter to operators on Hilbert-
Schmidt operators.
For a Cy-semigroup (T¢)¢=o ON H and any operator
S € B(H), if (Ly,)¢=0 Is defined on B(H), with
(L1:S)tz0 = (TeS)e=0, then (Ly)eso is a Co-
semigroup, since for any t,q =0 and any S €
B(H),
Lr,S=LiS=1IS=1,
Lr,Ly,S = Lr,(Lr,S) = L1, (T,;S) = Te(T,S)
= Tt4qS,
li_r)rc} Ly S = %1_%1 TS =T,S.
(Lt )e=0 Is called a left multiplication Co-
semigroup related to (T;)¢so Or simplify a left
multiplication C,-semigroup.
It is proved in this paper that the recurrency of
(Lt )e=0 ON By (H) with [[.]|,-topology and on
B(H) with SOT-topology is equivalent. It is
established that if (T;);so Satisfies the RHCC or
HCC, then (Lr,)¢so IS recurrent. It is proved that if
a Cy-semigroup is chaotic, hypermixing or
supermixing, then its related left multiplicationC,-
semigroup on the space of Hilbert-Schmidt
operators is recurrent if and only if it is hypercyclic.
Moreover, some sufficient conditions for
hypercyclicity and recurrency of (L7,):o that are
based on dense subsets of B(H) are stated.

and its recurrency on the space of Hilbert-Schmidt
operators are equivalent.

In the following, consider S(H) as the set of finite
rank operators. That means for any T € S(H), a
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natural number my can be found such that Te; = 0,
wheni > my.

Theorem 1: For a Cy-semigroup (T¢)¢so ON H, the
following are equivalent:
(@) (Lt,)¢=0 is recurrent on B, (H) with |]. |-

topology,
(b) (L7 )¢=0 s recurrent on B(H) with strong

operator topology.

Proof: (a)—(b) Suppose (Lr,)¢so IS recurrent on
B,(H) with [|. ||,-topology. Hence (Lr,)¢so has a
dense set of recurrent vectors on B, (H) by Theorem
3 in 2. That means Rec((Lr,)¢»0) is dense in B,(H)
with [[.]|,-topology. Consider x € Rec((Lt,)¢=0)-
Hence, LTtnx — x with [|.]|,-topology for some
increasing sequence (t,). Therefore, Ly, x — x
with SOT-topology. So x is a recurrent vector for
(Lt.)¢=0 In the SOT-topology on B,(H). Hence,
Rec((Lt,)=0) is dense in B,(H) with SOT-
topology. As it is known, B,(H) is dense in B(H)
with SOT-topology *. Hence, (Lr,)¢»o has a dense
set of recurrent vectors on B(H) with SOT-
topology. So (Ly,)¢=o is recurrent on B(H) with
strong operator topology by Theorem 3 in 2.

(b)—(a) Suppose that (L, )¢s is recurrent on B(H)
with SOT-topology. Let U be a norm open and
nonempty set. Let A € U nNS(H). Suppose that
Ae; =0 for any i>N. Let D=YN, ¢, Qe;.
Hence,

N
AD = ZA(ei ® el-) = A.
i=1
Now, let
1
Uy = {V € B(H):|[Ve; — Aejl| < o 1<i< N}.
U, is a SOT-open set in B(H). By assumption,
there is t, > 0 with this property that L;tlo (Up) N
Uy, # ©. Hence, there is S € B(H) such that S, €
Uy and T;, Sy € Ug. That means, for any i with 1 <
i <N,
1
||Skei — A€i|| < P and ||Tt05kei — Aei|
Now,
2 2 N
||SRD —AD||2 = ?’=1||(5k _A)ei” S @
and

2
Lr, (5D) = 4D|| = ZL|IToS ~ el <

N

k2’

<1
pE

Therefore, S, D — AD with ||. ||, and LTtO (SD) -
AD with ||.||,, where k — . So S;D € U, and
LTt0 (SxD) € U. Moreover, S, D and LTto (SxD) are
finite rank operators and hence, they are Hilbert-
Schmidt operators. Therefore, Lilo wynu = 9.

The following theorem indicates that satisfying
HCC and RHCC are sufficient conditions for the
recurrence of left multiplication C,-semigroup.

Theorem 2: If (T}) s, satisfies HCC or RHCC on
B,(H), then (Lt,)¢=o is recurrent.

Proof: If (T;):so Satisfies RHCC, then it satisfies
HCC by Proposition 2.2 of 1°. So T; satisfies HCC *.
By ', Lr, is hyper on B,(H). Hence, Ly, is
recurrent on B,(H). Therefore, (L7 )eso IS
recurrent by Theorem1 in 2,

Now, this question arises is the recurrency of
(Lt )e=0 iImplying that (T;):s, is recurrent? In the
next theorem, it is shown that if (L7 )¢so satisfies
HCC or RHCC, then the answer to this question is
positive.

Theorem 3: Let (T;):=o be a Cy-semigroups on H.
If (L7,)¢=0 Satisfies RHCC or HCC on B, (H), then
(T¢)¢s0 IS recurrent on H.

Proof: Let (L7 )  satisfies RHCC. Hence
(Lt,)eso Satisfiess HCC . So (Lr, @ Lt )es0 1S
hypercyclic by Theorem 2.3 in **. Therefore, Ly, &
Ly, is hypercyclic for any t > 0 by Theorem 2.3 in
6. Consider t, >0. By Theorem 2.3 in
LTtosatisfies in HCC. By Proposition 2.3 in 2,
@Dn=q Ty, satisfies in HCC. Therefore, T is
hypercyclic. Thus T, and so (T;)» is recurrent.

By Theorem 2, and Theorem 3, the following
corollary is concluded.

Corollary 1: Let (Ty)so on H and (L, )¢=o ON

B, (H) both satisfy one of RHCC or HCC. Then the
following conditions are equivalent:
(@) (L7 )e=0 is recurrent on By(H) with |[|.[[,-

topology.
(b) (Lr)e=o is recurrent on B(H) with SOT-

topology.
(€) (T)¢xo s recurrent on H.
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A Cy-semigroup (T;)¢so ON H is chaotic if it is
hypercyclic and has a dense set of periodic points in
H. That means, there is a dense set of points like
he€H such that T, h=h for some t, >0 ™
Therefore, a chaotic Cy-semigroup is recurrent.

Example 1: Consider H:=1P, 1<p < co. Let
(T)¢=0 be a Co-semigroups on [P such that T, =
AoB for some t, > 0, where B is the backward shift
on [? and || > 1. By Example 2.32 %, T, = 1B
is chaotic. Hence, (Ti)tso iS a chaotic C,-
semigroups on [P since any periodic point of T; =
AoB is a periodic point of (T;)¢s0. Hence, (Tt)¢so
is recurrent on [P. So, (Lr,)=0 iS recurrent on
B,(H) with [|.||,-topology, and (Ly )¢ IS
recurrent on B(H) with SOT-topology by Corollary
1.

By Theorem 3, the following corollary about
chaotic semigroups is concluded.

Corollary 2: If (T;)¢so and (S¢)¢so are chaotic Cy-
semigroups on H, then (T; @ S;)¢so IS recurrent on
H®H.

Proof: By Corollary 6.2 in 9, a chaotic semigroup
satisfies RHCC. By Corollary 5.6 in ¥, (T, @
St)t=o satisfies in RHCC. So (T; @ Si)¢so IS
recurrent.

The following corollary is a direct result of
Corollary 1, and Corollary 2.

Corollary 3: If (T;)¢¢ is a chaotic Cy-semigroups
on H, then (Lt )¢so is recurrent on B,(H) and

B(H). Moreover, (L, gr,)¢=0 IS recurrent.
Some Sufficient Conditions

This section is started with a sufficient condition for
hypercyclicity and hence, recurrency for a C,-
semigroup.

Theorem 4: Let (T;):so be a C,-semigroup on a
Hilbert space H. Suppose A € H exists such that
A = H and suppose that (S;);so €xists on H with
these properties:

(@) T;S; =1 on A,
(b) |IT¢(a)|] = 0, whent — oo forany a € A,

©) [I1S¢(a)|| = 0, when t — oo for any a € A.

Then (T})¢so IS hypercyclic. Especially, (T;)¢so iS
recurrent.

Proof: It is sufficient to consider Theorem 7.29 in 1.

The idea of the following theorem is given from
Theorem 2.1in .

Theorem 5: Let (T;)tso be a Cy-Semigroups on
B(H). Suppose that there is a Cy-semigroup (S;)¢=o
on B(H) such that T;.S; = I for any t > 0. If there
isa SOT-dense set D < B(H) such that for any g €
D,

[IT:(9)]] = 0,and ||S.(g)I| = 0,

when t — oo, then (Ti)so IS
Especially, (T;):¢ IS recurrent.

hypercyclic.

Proof: Let D' = {fy:k = 1} be a countable SOT-
dense subset of D. By hypothesis, t; can be found
such that

I, (| < 5

Also, t, can be found such that

1T, 0| < 55 and [[Se, ()| < 3

Also, one can find t5 such that

||Tt1+t2+t3(f3)|| < 21+++3: ||Tt2+t3(f3)|| < 22_14,3:
1T, ()| < 55

||St2+t3 (f1)|| < 22%, and ||St3 (f2)|| < 2_13

In such a way, one can find ¢, such that for m =
1,2,...,kand fori = 2,3, ..., k,

1
||Ttm+tm+1+---+tk(fk)|| < ST DR

1

and

1
||Sti+ti+1+~--+tk(fi—1)|| < SEGE DT AR
2

Let
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f =30, e e, (i)

The above definition is meaningful. Since the series
is absolutely convergent by Eq 2.

Consider m > 2. Then by the boundedness of
Tt1+t2+~~~+tm’

Tt1+t2+---+tm(f)

= Zk 1Tt1+t2+---+tht1+t2+~~~+tk (fi)

YR Tyt tytettn (i) + fin +
Z?=m+15tm+1+-“+tk(fk)' 3

By Eq 1 and Eq 2, it is concluded from Eq 3 that
Mm T ettt (F) = frnl | = 0. 4

f is a hypercyclic vector for (T;);so. For this, let U
be a nonempty open set in SOT-topology. So there
are hq, hy, ..., h, € Hand f, € B(H) such that

U= U(fO'g; hlthI "-'hn) = {g € B(H)' ||(g —
fohill <e i=12,..,N}.

If hy=h,= ..=h,=0, then U=B(H) and
hence U N orb((Tt)¢s0,f) # D.

If one of the h;’s is non-zero, consider
a =max{l,||h]] :1<i<N}L

By Eq 4, a positive integer M exists with this
property that forany m > M,

Tyttt () = finl | < 5
Hence, forany 1 <i < N and forany m > M,

Tepstptttnf (R = (DI < o [Ril] < o

On the other hand, SOT-density of {f;:k = 1} in
B(H) implies that {fi:k > m} is SOT-dense in
B(H), too. Hence, there is ko = M such that f €
U.Soforany ko > M,

|1fi () = fo (|| < 5

Therefore, by Eg5forany 1 <i < N

Tepstyestgg f (R = fo(ROII <
Tt pstyrertg F (h) = fig (I +
|1fico (h) = fo(h2)|

Now, Eq 6 implies that Ttytty bty (f) eU. That

means in this case, U N orb((T¢)¢so,f) # 0. SO f
is a hypercyclic vector for (T;)¢so. This completes
the proof.

Theorem 6: Let (Ty)¢s0 and (S¢)eso be two Cp-
semigroups on B(H) . Suppose that A € H exists
such that A = H, and for any x € A,

tli_)rg||Ttx|| =0, and glrg||5tx|| =0.

Then there is D € B(H) such that D is dense in
B(H) with SOT-topology with this property that for
any W e D,

lim [|L7,(W)]| = 0, and lim |ILs, )| = 0.

t—oo

Proof: A countable set A" € A can be found such
that A’ = H. Let {e,:k =1} be an orthonormal
basis for H. Consider

D:={W € B(H): 3ny,; We, = 0 whenk >
ny and We, € A" when k<ny }. 7

The set D is dense in B(H) [4, Lemma 3.1]. Also, if
f = Yi=1 axey With Yp_; |ag|* < oo, then by Eq 7
forany W € D,

L WAL = T W

=1m (D, " awieo )12
= 11), T

<> Qe Imwel)?

Q. lwPQ, " ITWeol

<|IfII? ZRZ NTe(Wel?. 8

For each W € D, We, € A’ for any k <ny. So
[IT:(Wer)|| = 0, when t— c. Hence, it is
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concluded from Eq 8 that ||L,(W)|| = 0, when
t - 0. So, D is the desired set.

Theorem 6 and Theorem 4 lead us to the next
corollary. Note that if (T;)¢s0 and (S;)¢so are two
Co-semigroups on H with this property that T,.S, =
[ on H, then Ly Lg, = I on B(H). Because for any
W € B(H),

Ly Ls,W = Lr,(Ls,W) = Ly, (SW) =T, S W =
w. 9

Corollary 4: Let (T;):o be a Cy-semigroup on H.
If (T¢)so Satisfies the conditions of Theorem 4,
then (Ly,)¢s0 is hypercyclic on B, (H) with [[.]],-
topology. Especially, (T}):so iS recurrent on B(H)
with SOT-topology and on B,(H) with ||.]],-

topology.

Proof: If (T;):o satisfies the conditions of
Theorem 4, then (T;):s, satisfies the conditions of
Theorem 6. Also, because (S;)tso IS the right
inverse of (T;)¢so, then (Ly,)¢»o is the right inverse

of (L1,)¢=0 as itis shown in Eq 9.

Supermixing, Hypermixing, and Recurrency
of Left Multiplication Cy-semigroup

A Cy-semigroup (Ty)ssp ON  H is named
supermixing if UjZy N¢s; Te(U) is dense in H for
any nonempty open subset U of H and if H \ {0} <
Uizo Nesi T (U), then (Ty)¢so is called hypermixing
17 The set of hypermixing and supermixing C,-
semigroups are proper subsets of the set of
hypercyclic Cy-semigroups Y. It is shown in the
next theorem that hypermixing (supermixing) of a
Co-semigroup  indicates  hypercyclicity  and
recurrency of the related left multiplication.

Theorem 7: Let (T¢)so be a hypermixing
(supermixing) C,-semigroup on H. Then

(@) (Lt )e=0 is hypercyclic on B,(H) with [[.|],-
topology,

(b) (Lt )e=0 is recurrent on B,(H) with [[.[]5-
topology,

() (Lt )e=0 Is recurrent on B(H) with SOT-
topology.

Proof: First note that (T});s Satisfies HCC because
(Ty)t=o IS hypermixing by Theorem 3.6 in *'.
Similar to the proof of Theorem 2, Lp, s
hypercyclic on B,(H). So (Lt,)t=o is hypercyclic
on B, (H).

Part (a) implies part (b) because recurrency is
concluded from hypercyclicity.

Finally, Theorem 1 asserts part (c), since by
Theorem 1, the recurrency of (Lr,)¢=o ON By (H),
and recurrency of (Ly,)t»o ON B(H) with SOT-
topology are equivalent.

The proof is similar when (T})s( IS Supermixing.

The following theorem shows that hypermixing
(supermixing) of left multiplication C,-semigroup
(L1 )¢=0, implies the recurrency of (T;)¢xo-

Theorem 8: Let (L) e=0 is a
hypermixing(supermixing) C,-semigroup on B, (H)
with ||. ||,-topology. Then (T;):s0 IS hypercyclic on
H. Especially, (T;)¢so IS recurrent.

Proof: By hypothesis, (L7,):=o is @ hypermixing.
So by Theorem 3.6 in ¥/, (Lr,).>o Satisfies HCC.
Similar to the proof of Theorem 1, the operator T,

is hypercyclic. Hence, (T:):so is hypercyclic on H
and hence, it is recurrent.

Similarly, the supermixing of (Lr,):so indicates
that (T;)¢so IS recurrent.

Since hypermixing (supermixing) C,-semigroups
are hypercyclic they do not exist on B(H) with
SOT-topology. Also, the following corollary about
the left multiplication operator is given.

Corollary 5: If (Ly.)¢=o is a hypermixing
(supermixing) Cy-semigroup B,(H) with |[|.]]|,-
topology, then L;, and T, are recurrent,
respectively on B, (H) and H for any t > 0.

Proof: It is deduced from Theorem 3.6 in !’ that
(L7, )es0 satisfies HCC. So (Lr,)¢so IS hypercyclic
on B, (H). Hence, Lz, is hypercyclic on B, (H) for
any t >0 by Theorem 2.3 in **. Hence, Ly, is
hypercyclic on B, (H) for any t > 0. Moreover, the
hypercyclicity of Ly, implies that T, satisfies HCC
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on H by Theorem 2.2 in'2 Therefore T, is
hypercyclic and so recurrent for any t > 0.

Conclusion

A Cy-semigroup is an important structure for
mathematicians. In this paper, the recurrency of the
Co-semigroups on the space of Hilbert-Schmidt
operators are investigated which is an exciting
matter in dynamical systems. In this paper, it is
proved that the recurrence of a Cy-semigroup
(Te)¢s0 ON H, and the recurrence of its related left
multiplication  C,-semigroup on B,(H) are
equivalent. It is interesting to know if this issue can
be stated for the related right multiplication C,-
semigroup as well? Recall that (Ry,):so is the
related right multiplication C,-semigroup such that
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