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Introduction 

Information on the spatial disposition of land cover 

and land use over huge zones are tremendously 

significant for several ecological observing tasks, 

including ecosystem dynamics, climate change, 

Abstract 

Reliable and accurate crop maps are required for food security from regional to global scale. The 

increased availability of satellite imagery leads to a “Big Data” problem while producing crop maps. 

Now, cloud-based platforms have gained a lot of attention for crop classification over large regions. 

The main goal of the research is to analyze crop classification using various machine learning (ML) 

such as Support Vector Machine (SVM), Gradient Tree Boosting (GTB), Random Forest (RF), 

Decision Tree (DT) as well as Classification and Regression Trees (CART) on Google Earth Engine 

platform. The aim is to explore the Google Earth Engine’s efficiency (GEE) when classification 

different crops using multi- spectral datasets of Sentinel 2 MSI and Landsat 8 OLI satellites for crop 

mapping of Mathura district of Uttar Pradesh, India. The best cloud free image (less than 5%) of 

Landsat 8 OLI and Sentinel 2 MSI datasets ("2020-12-26","2020-12-30") were used for crop 

classification with the help of automatic filtering i.e. percentage cloud property on the GEE platforms. 

Moreover that GEE platform perform, acquiring, clarifying as well as preprocessing of satellite dataset 

could be organized very powerfully. Points as feature spaces were used like training datasets. 

Furthermore confusion matrixes are used for accuracy assessment (producer and user accuracy) and 

kappa coefficient. Additionally compare the outcome of the dataset on the basis of overall accuracy 

(OA), F1 score as well as kappa coefficient. The highest OA is found using GTB (86.7%) followed by 

RF (82.5%), CART (81.0%), DT (78.1%) and SVM (66.5%) for Landsat 8 OLI image. For the 

Sentinel 2 image, GTB achieved the highest OA of 84.2% followed by SVM (84%), RF (82.3%), DT 

(75.2%), and CART (75. 0%) respectively. On the basis of research, found that GTB performed well 

among all the classifiers to crop mapping using both multi-spectral datasets. 
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management of natural resources, food security, and 

others1,2. Classification of crops is vital to know the 

climatic requirements and physiological of different 

crops. The crop maps are very beneficial for the 

assessment of diversity, food security, sustainable 

development and management of agricultural 

fields3. Reliable and accurate crop maps with high 

accuracy can be used for the improved estimation of 

agriculture statistics for better crop yield2,4,5 and 

dryness related danger6. Reliable crop mapping is 

needed for accurate agriculture estimation and 

better cultivation practices. Several factors 

including soil condition, contamination of ground, 

reduction in water resources, and emission of 

greenhouse gases also affect crop productivity3. 

Traditional ground survey methods and statistical 

approaches used in crop related studies are tedious, 

time consuming and expensive. So, it is required to 

adopt a fast, reliable and automated system for 

mapping and monitoring croplands at different 

observational scales6. 

In the last few decades, remotely sensed images 

became the most capable data sources for the 

classification of crop types, monitoring the growth 

of crops as well, and acreage estimation 7-9 

.Currently, a wide range of datasets from various 

satellite sensors are freely available on a regular 

basis. At the same time, the availability and 

accessibility of datasets assist a varied group of 

researchers in expansion insights into complex 

landscape processes over large areas10. In particular, 

analyses in the arena of agriculture have profited 

from the increased accessibility of remote sensing 

imageries. In the view of data science, it is required 

to use a new approach in extracting relevant 

information from RS datasets11. However, the 

computational availability of resources required to 

process and analyze “Big Data” is a considerable 

hindrance in many studies. As a consequence, 

several cloud-based computing platforms have been 

developed12.  

GEE is one of the most commonly used and freely 

available platforms to process and analyze remotely 

sensed datasets. It allows users to exploit the 

increasing library of multi-spectral as well as multi-

temporal datasets, by immensely decreasing the 

time required to download as well as process 

imagery 10, 13. GEE with minimal human interaction 

and interference, performs well in terms of less 

consuming time and processing complexities1. In 

addition to the fast processing, the accessibility of 

various package with large numbers of methods 

simplify access to RS tools making GEE 

increasingly popular among users. In many studies 

the applications of GEE are reported for various 

domains including agriculture, forestry, ecology, 

LULC studies 13- 15. The GEE offers a set of 

advanced supervised machine learning (ML) 

classifiers as well that can be utilized for crop type 

mapping. These classifiers are preferred frequently 

because of the option of setting a predefined 

number of considered output classes. In many 

studies, classifiers are well-documented and used 

for classifying crop types using remotely sensed 

imageries 7, 16. 

Key challenges for this research: 

• Facing a lot of challenges while capturing 

images when the cloudy climate is above 10% 

then the      images not considered. 

• Only below 10% of the cloudy climate is 

considerable. 

• Techniques utilized in crop classification are 

time-consuming, costly and abstruse. 

Main objectives of this research: 

• The aim of this study is to assess feasibility of 

GEE to study crop classification in the Mathura, 

by determining the extent of crop mapping 

using various ML methods such as CART, RF, 

DT and SVM in the GEE platform.  

• Additionally is to compare multiple classifiers 

(RF, SVM, CART, GTB) using GEE platform 

when classifying with different Sensors 

(Landsat 8, Sentinel 2) for crop mapping. 

• For food security authentic and perfect crop 

classification is needed from territorial to 

universal. 

• •The production of crop maps is "Big Data" 

dilemma because of the increased accessibility 

of satellite imagery.  

• Cloud computing platforms have attracted a lot 

in interest for crop classification over vast 

areas. 

Moreover, to explore crop classification using 

various ML methods like SVM, RF, DT, CART, as 

well as GTB on GEE platform. For this purpose 

Mathura as study area has been selected using RS 

dataset (Sentinel 2 MSI as well as Landsat 8 OLI 

satellite) as well as ground truth dataset gathered 

with the help of a smartphone. Hence, it aims to 

compare multiple classifiers (RF, SVM, CART, 
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GTB) using GEE platform with multiple Sensors 

(Landsat 8, Sentinel 2) for crop classification. 

The major contributions of this research   

• It is to investigate the effectiveness of the GEE 

for classifying various crops using multi-

spectral datasets from the Sentinel 2 MSI as 

well as Landsat-8 OLI satellite. 

• To produce a map of crops for the Mathura 

district of Uttar Pradesh, India, several 

supervised ML classifiers, including CART, 

RF, GTB, DT and SVM are tested. 

• For the Landsat 8 OLI image, GTB (86.7%) had 

the highest overall classification accuracy, 

followed by RF (82.5%), CART (81.0%), DT 

(78.1%), and SVM (66.5%). 

• GTB achieved the highest overall classification 

accuracy for the Sentinel 2 image at 84.2%, 

followed by SVM (84%), RF (82.3%), DT 

(75.2%), and CART (75.0%), in that order. 

• Using both multi-spectral datasets, it was 

discovered that GTB outperformed all other 

classifiers in mapping agricultural crops. 

• It significantly to the evaluation of the use of a 

cloud based platform for crop classification.  

The rest work is arranged in the following Section. 

In Section 2, the related literature has been 

reviewed. In Section 3 the proposed methodology is 

discussed and implemented in the different crop 

classifications, Section 4 highlights the result and 

discussion as well as a comparison that took place 

to justify results. In the last Section 5 research is 

concluded with the overall summary of 

accomplishments provided. 

Related Works 

Agriculture is the backbone of India around 61.5% 

of the population depends on agriculture in rural 

areas. Worldwide for crop productivity, India has 

second ranked. The classification of crops is very 

important for agriculture policy making, food 

security, farmer’s income and sustainable 

agriculture development. Many environmental 

monitoring activities, including analyzing 

ecosystem dynamics, food security, climate change, 

and others, primarily rely on data on the spatial 

distribution of land cover or land use (LCLU) over 

large areas. High-accuracy crop maps can be 

utilized for stratification of agricultural statistics 

estimation, crop production forecasting, and 

drought risk assessment17-19. For accurate 

agriculture estimation reliable crop mapping is 

needed and better cultivation detection. For solving 

these types of tasks as crop mapping Satellite 

imagery has become the main data source over the 

last few years20. Many satellites are available which 

are open access and free with high spatial 

resolution. Building high quality crop maps on a 

regular basis is encouraged by new possibilities. 

Due to the growing usage of remote sensing data 

from a data science perspective, a big data problem 

generates new tasks for managing data that require 

new ways of removing critical information from 

RS.  For high resolution crop maps for a specific 

area, processing a large number of satellite pictures 

taken with different sensors is required. Images 

taken over the same time period allow for 

comparison of the output from various sensors 

(Landsat 8 and Sentinel 2) 21, 22. 

Crop classification is crucial for the development of 

sustainable agriculture, farmer income, food 

security, and agricultural policy. Crop productivity 

is also influenced by soil quality, ground 

contamination, shrinking water bodies, and 

greenhouse gas emissions23. Ground survey 

techniques and statistics were traditionally 

employed. These were expensive, time-consuming, 

and labor-intensive. Therefore, a quick, trustworthy, 

and automated method that uses satellite photos to 

offer precise crop mapping is needed 24. Integrating 

new technology like deep learning, machine 

learning and Internet of things can be used for crop 

mapping. It will help to improve accuracy of crop 

mapping, classification and identification 25.  The 

creation and choice of classification techniques and 

characteristics retrieved from satellite data are 

critical to achieve crop mapping products from 

remote sensing 26.  The maximum likelihood 

classifier, classification trees (such as the 

classification and regression tree), and machine 

learning classifiers (such as random forest and 

support vector machines) were the most widely 

used classification algorithms for single, multi-

temporal, and multi-source satellite imagery27. 

 GEE has performed quickly and effectively in 

terms of time and processing complexity with the 

least interference from and interaction with humans. 

GEE provide cloud platform to access multiple 
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datasets (Landsat 8, Sentinel 2)  free available and it 

provides many pixel -based classifiers (multiple ML 

methods) that can be used for crop mapping 28.  For 

attaining the goals of evaluating the classification of 

crops using several ML algorithms with numerous 

datasets (Landsat 8, Sentinel 2) of study region 

Mathura (Uttar Pradesh), GEE has shown to be 

reliable. Hence, to compare multiple classifiers (RF, 

SVM, CART, GTB) using GEE platform when 

classifying with different Sensors (Landsat 8, 

Sentinel 2) for crop mapping 29-31. The author 

applied a variety of techniques on the GEE platform 

and compared the results using ML techniques with 

the aid of OA, the kappa coefficient and the F1 

score32. The comparative study is described in Table 

1. 

Table 1. Comparative study 
Ref. 

No 

Algorit

hm 

Working 

ground 

Expediency Limitations Senso

rs 

Classifi

ed 

Crops 

Comparison with 

proposed work 

21 Rando

m 

Forest 

It is a 

supervised 

learning that 

works on 

bagging 

concept. A 

number of 

module are 

trained various 

subset of dataset 

and final 

outcome is 

produced by 

combining the 

entire module.  

It is accomplished 

of regression as 

well as 

classification. A 

RF produces 

accurate 

predictions that 

are simple to 

comprehend. 

Huge datasets can 

be handled 

efficiently. In 

comparison to the 

DT method, the 

RF offers a higher 

level of accuracy 

in estimation. 

To create 

maps of 

specific 

agricultural 

fields using 

the 

probabilistic 

result after 

post-

processing. 

Digit

al 

globe 

world 

view2 

Off 

season, 

growin

g 

season 

RF may not be as 

correct as GBT. 

They can 

distinguish intricate 

forms in data 

because train to 

accurate each fault. 

The GBT, however, 

might overfit if the 

dataset is noisy.  

22 Gaussia

n mixer 

model 

It is 

probabilistic 

method suggests 

that all data 

points were 

formed by 

combining a 

limited number 

of Gaussian 

scatterings with 

unknown 

parameters. 

They give 

evaluations of 

likelihood that 

every data point is 

a member of each 

cluster. Compared 

to the single 

group assignment 

that the majority 

of other clustering 

method offer and 

lot more related 

data. 

It is 

necessary to 

maintain the 

reliability of 

the crop 

yield 

forecasting 

model. 

MOD

IS 

Winter 

crops 

Compared multiple 

methods.  

25 Method 

B, C, 

D, B2, 

D2 

It considers the 

class of restored 

pixels and 

lessens its 

influence on the 

outcome. Non-

restored pixels 

received a 

weight, and 

each restored 

pixel received a 

weight equal to 

the square of the 

Each element that 

comes close to 

meeting the 

requirements of 

the permitted 

minimum area 

dimension, 

compactness, and 

class correctness 

was added to the 

previously 

classified parcels. 

Does not 

account for 

the 

possibility 

that a single 

parcel has 

many plots. 

When 

optical data 

are present, 

classification 

is useful (D1 

and D2). 

Lands

at 8 

OLI 

ad 

Senti

nel 1 

Parcel 

and 

pixel 

based 

Compared two 

dataset one is 

Sentinel 2 MSI 

other is Landsat 8 

OLI.  
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proportion of 

clear images to 

all other images 

in the time 

series. 
28 SVM, 

DT, 

RF, 

Naive 

Bayes 

and NN 

SVM 

categorizes data 

points even 

when they are 

not otherwise 

linearly 

separable by 

mapping the 

data to a high-

dimensional 

feature space. 

The optimization 

issue is converted 

into two dual 

convex quadratic 

programs, 

avoiding the 

challenges of 

employing linear 

functions in the 

high-dimensional 

feature space. 

 

When 

invoked 

from Python, 

it typically 

produced 

unstable 

classification 

results for 

SVM 

classifiers 

and instead 

returned an 

Internal 

Server Error. 

Lands

at 8 

TOA 

8 Multiple methods 

are applied, GTB 

gives better 

outcome.    

32 SVM, 

MXL, 

RF, 

CART 

It is a predictive 

model that 

describes how 

the values of an 

outcome 

variable can be 

anticipated 

based on other 

values. A CART 

output is a DT, 

where each end 

node has a 

prediction for 

the outcome 

variable and 

each fork 

indicates a split 

in a predictor 

variable. 

Suitable for both 

categorical and 

continuous 

responses. Manag

e several missing 

values and 

extreme outliers 

with ease 

Single 

Sensors, In 

case of  

vegetables 

MXL were 

not 

performed 

well  

Senti

nel 2 

Wheat, 

Mustar

d 

It is easy to 

comprehend and 

interpret. little data 

preparation is 

necessary.  

The cost of using 

the tree increases 

logarithmically 

with the volume of 

data used to train it. 

 It can manage both 

categorical and 

numerical data. It 

can manage issues 

with several 

outputs. 

33 DCNN 

(paddin

g 

techniq

ue) 

Convolutional 

neural networks 

(CNNs) can 

benefit from 

padding since it 

describes the 

number of 

pixels that are 

added to an 

image during 

processing by 

the CNN kernel. 

Padding can 

enhance the 

performance of 

the model by 

minimizing 

information loss 

at the input 

feature map's 

borders. 

Many 

Arabic have 

similar 

sound un 

efficient to 

solve them 

Voice 

data 

of 

schoo

l 

Voice 

data 

GEE platform is 

used which easy to 

use for remote 

sensing dataset.   

34 MLP, 

RF,BY

O 

There are an 

endless number 

of hidden layers 

between the 

output and input 

layers that make 

up the directly 

connected 

It can be applied 

to resolve 

challenging 

nonlinear issues. 

It effectively 

manages vast 

volumes of input 

data. Following 

Worst result 

using 

logistic 

activation 

function in 

MLP 

LIDA

R, 

IKO

NOS 

Urban 

area 

(road, 

un 

road) 

Comparison with 

SVM, GBT, DT, 

RF and CART are 

conducting on GEE 

platform.  

https://doi.org/10.21123/bsj.2023.8952


 

Page | 2467  
 

2024, 21(7): 2462-2484 

https://doi.org/10.21123/bsj.2023.8952 

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

mechanism of 

MLP. In MLP, 

data travels in a 

forward 

direction from 

the input to the 

output layer, 

similar to a 

network 

operating in 

feed-forward 

mode. All of the 

MLP's nodes are 

trained with 

back 

propagation. 

training, quickly 

makes 

predictions. Even 

with less samples, 

the same accuracy 

ratio is still 

possible. 

35 SVM,

MNB 

The MNB 

method relies on 

the Bayes 

theorem and 

makes the 

assumption that, 

given the class 

variable, the 

features are 

conditionally 

independent. 

MNB takes a 

features vector 

this term act as a 

frequency or it 

seems number of 

times. 

More feature 

engineering 

is need for 

gained 

higher 

accuracy 

News 

sourc

es 

(twitt

er) 

Textual 

propeg

anda 

Six classes are used 

as urban, water, 

vegetation, 

mustard, wheat and 

othercrops 

36 KNN, 

NB, 

DT, 

SVM 

Regression and 

classification 

issues are 

addressed by it. 

In order to 

forecast the 

class or value of 

a new data 

point, it locates 

the K nearest 

points in the 

training dataset 

and uses their 

class to do so. 

It is simple to 

comprehend. 

Regression as 

well as 

classification 

matters can be 

solved. It is good 

for nonlinear 

dataset. 

The 

performance 

of SVM is 

reduced due 

to noise. 

NSL_

KDD 

Attack Category data are 

used having  six 

classes  

The idea of Table 1. Comparative study is taken from 37.  

Materials and Methods 

This study has been carried out at Mathura city of 

Uttar Pradesh (UP) in India and situated in the 

northern part of India shown in Fig. 1, around 55 

km north of Agra and 145 km southeast of Delhi. 

The latitude and longitude of Mathura are 27.4924° 

N and 77.6737°E. The administrative center of 

Mathura district and covers an aerial extent of about 

1482 square km and has an average elevation of 174 

m above the mean sea level. 

https://doi.org/10.21123/bsj.2023.8952
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Figure 1.  Study area Map along with Satellite 

View 

According to the 2011 census, Mathura has a total 

population of 349,909 people and a literacy rate of 

74.97%. In Mathura, the overall area is 3.32 mha, 

the total area under cultivation is 3.28 mha, and the 

total area under irrigation is 3.11 mha. A lot of land 

is used for crop farming in Mathura. Crops are sown 

during the Rabi and Kharif seasons. Typically, two 

important crops—wheat and mustard—are planted 

during the winter (Rabi) season. For large-scale 

crop mapping, some research have compared the 

effectiveness of ML algorithms for multi-sensor 

categorization optical imaging. The goal of this 

work is to assess a few supervised machine learning 

classifiers for crop categorization that are available 

online through the Java Script API of the GEE 

cloud computing platform. Its purpose is to 

investigate how well the GEE medium performs 

while classifying multi-sensor optical pictures from 

Sentinel-2 and Landsat-8 for crop mapping with the 

potential to use it at a larger scale (like the district 

level). Its work offers substantial information 

regarding the presence of crop type in agriculturally 

dominated areas. Such data is dynamic for the 

successful monitoring and management of crop 

diversity with its productivity at different scales. 

Dataset 

The dataset is categorized into two parts. Firstly, 

multi-spectral remote sensing images acquired from 

sentinel 2-MSI as well as Landsat 8 OLI sensors are 

used for comparative analysis of crop classification. 

Images downloaded from USGS Landsat 8 OLI 

collection one tier one calibrated top of atmosphere 

(TOA) reflectance and Sentinel 2MSI from 

https://scihub.copernicus.eu.  A dataset is good 

because it contains less than 5% cloud cover. The 

Landsat 8-OLI image has spectral bands (band 1 to 

7 as well as band 9) at 30 m spatial resolution as 

well as panchromatic band 8 at 15 m resolution. In 

this study, bands are used from band 2 to band 7. 

13 spectral bands make up the Sentinel 2 MSI, 

including 4 at 10 m, 6 at 20 m, and 3 at 60 m spatial 

resolution.   Sentinel scientific data hub provided a 

multispectral Level-2A (L2A) dataset from Sentinel 

2. The reflectance of Sentinel 2’s L2A dataset is the 

bottom of the atmosphere (BOA) with atmospheric 

correction as well as radiation correction. Images 

from Sentinel-2 L2A with less than 5% cloud 

coverage percentage and classified Sentinel-2 

imagery using nine spectral bands: green, blue, red, 

SWIR-2 bands, shortwave infrared band 1 (SWIR-

1), near infrared (NIR), red-edge band 1 (RE-1), 

RE-3 as well as  RE-2. In this research B3-Red, B4-

Green and B8-NIR bands are used. Sentinel 2 MSI 

can offer numerous spectral temporal characteristics 

for crop mapping. Its 5 day average revisits length, 

high spatial resolutions and 3 red edge bands37-41. 

For crop classification divided total area into six 

classes such as urban, vegetation, water, wheat, 

mustard, and other crops. Further multispectral 

imageries, a wide field review as conducted across 

the study area to gather ground datasets of various 

crops using a handheld GPS receiver. Finally, six 

classes including 2 major crops (wheat and 

mustard), urban, water bodies, vegetation, and other 

crops were shown based on field surveys as well as 

visual image interpretation of area. 

Secondly, the ground dataset samples are required 

to assure crop classification accuracy. In December 

2020, conducted a field survey in the Mathura 

region using a hand-held Global positioning System 

with a position accuracy of 2 meters where Crop 

field samples were taken throughout the field 

survey and determined the boundaries of area of 

interest using high spatial quality images from 

Google Earth. At the plot level, crop samples were 

separated into two sections (80% - 20% for training 

as well as testing respectively) to ensure that testing 

and training pixels are in different fields. Fig.2 

shows ground dataset of crops (wheat and mustard). 

Images have taken from GPS devices of mobile 

phones. The images are taken in winter seasons 

(Rabi).   
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Figure 2. Ground dataset of Wheat and Mustard 

crops 

Google Earth Engine (GEE) 

It is a state-of-the-art cloud platform for geospatial 

and remote sensing data processing.  . Petabyte-

scale archives of additional data (various composite 

products) and publicly accessible RS imagery 

(Sentinel-1 or 2, Landsat-8 or MODIS) are available 

in GEE. GEE has access to computational 

substructure of Google for handling geospatial 

datasets in parallel, python and java script APIs for 

analysis visualization and an online IDE for rapid 

spatial analysis visualization and prototyping using 

the java script API [code editor] 

[https://developers.google.com/earth-engine/]. The 

GEE platform offers a variety of cutting edge ML 

methods for, Naive Bayes, RF, DT, GTB, CART, 

and SVM32. 

Classification Methods 

Support Vector Machines (SVM): It is the most 

standard supervised ML method which is 

commonly used for both regression as well as 

classification. The algorithm was developed based 

on non-parametric statistical learning frameworks 

by42. SVM to understand complex relationships and 

provide better accuracy with small training data 

sets43- 45. It uses the margins to solve classification 

problems. Margin is described as the shortest 

distance between any samples and decision 

boundary. Margin is maximized hence decision 

boundary is selected to maximize margin. Margin is 

perpendicular distance between decision border and 

data point that is closest to it. When the margin is 

maximized, a specific decision boundary is chosen. 

A subgroup of the data sets, called support vectors, 

defines the placement of this boundary. The 

employed kernel type is RBF (radial bias function), 

cost set to 1 and gamma set to 0.0002. Margin 

expansion results in specific alternatives at the 

decision boundary. The SVM classifier's output for 

classification is shown in Fig. 5 for Landsat 8OLI 

and Fig. 10 for Sentinel 2 MSI.    

Classification and Regression Trees (CART) 

It is popular non-parametric supervised ML method, 

proposed by Breiman L46. It develops optimal 

decision trees to provide higher accuracy and 

precision with smaller trees. The algorithm works 

based on Gini index metric derived from training 

data to choose the order of nodes to split into sub-

nodes. The Gini index values range from 0 to 1 

which determines the degree of unevenness of the 

sample data. A higher Gini index value indicates the 

greater unevenness of the sample data. It has been 

extensively used in RS studies for classification and 

regression analysis due to its ease to interpret, 

understand, and visualize47-49. It utilized 202 leaves, 

maximum and feature collection and training, 

CART classification was performed with 10 

training points at depth and 2057 utilizing training 

points from the data in GEE, a decision tree was 

generated. As illustrated in Fig. 6 for Landsat 8OLI 

and Fig. 11 for Sentinel 2 MSI. Classified images 

are created for six classifications, including urban, 

water, vegetation, wheat, mustard, and other crops. 

Random Forest (RF) 

 It is an ensemble method, uses a multitude of 

CART during training for classification and 

regression analysis50. It is developed to minimize 

the over fitting issues in CART algorithm using 

bagging technique. The bagging technique draws a 

subclass of training samples through replacement to 

generate various DT. In RF algorithm, the 

robustness, accuracy and precision depend on the 

user definite factors i.e., number of trees as well as 

number of samples for training and validation 

purposes. Its output is defined based on the majority 

of votes from forest trees51. The better accuracy and 

skill to handle high dataset dimensionality as well 

as multi-colinearity of RF classifier has made it 

popular in remote sensing community for various 

applications including classification 52, 53. From the 

training sample, create a 10-tree RF classifier. The 
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output of the RF classifier is displayed in Fig. 7 for 

Landsat 8 OLI and Fig. 12 for Sentinel 2 MSI. 

Gradient Boosting (GB) 

GB is a supervised machine learning technique 

which works on sequentially optimizing to develop 

a strong model from weak models for better overall 

performance. The algorithm improves the 

performance of model by minimizing the cost 

function i.e., Log loss based on probabilities when it 

is used as a classifier. The Log loss represents the 

nearest prediction probability to equivalent actual 

class. GB has better accuracy and handles missing 

data making it unique from other machine learning 

algorithms. Because of these, the utilization of GB 

for remote sensing applications including 

classification has been described in detail in the 

literature 54-56. However, GB is sensitive to outliers 

while continuing to minimize errors in the model, 

resulting in over fitting. Moreover, it is 

computationally costly in turn takes time and 

memory for training. The classification output of 

the GB classifier is displayed in Fig. 8 for Landsat 

8OLI and Fig. 13 for Sentinel 2 MSI. 

Decision Tree (DT) 

 DT is a popular non parametric method in RS that 

is used to solve both (classification as well as 

regression) problems. A DT is a technique for 

approximating a discrete value's performance that is 

resistant to noisy input. A root of tree (which 

contains all data), internal nodes and multiple leaves 

make up tree. Till the leaf node reaches, each node 

makes a binary choice to segregate the distinct 

groups. Pruning is done with a confidence factor of 

0.3 and a minimum of two times per leaf 57. The 

classification output of the Decision Tree classifier 

is displayed in Fig.9 for Landsat 8OLI and Fig. 14 

for Sentinel 2 MSI. 

Proposed Crop Classified Paradigm 

With the increasing demands, Geographical 

Information Systems (GIS) and Remote sensing 

platforms have gained a lot of attention to solve 

real-time hazards for the following areas in recent 

years, such as Agriculture, land-cover mapping, 

weather forecasting, natural hazards study, resource 

exploration as well as environmental study etc. 

According to survey by the Indian Council of 

Agriculture and Research have observed that 

cultivated land is more than 86% in Mathura, UP, 

India 58. Due to lack of resources the production 

ratio is affected as compared to agricultural land. 

Several machine learning approaches used for crop 

classification that aims to explore the Google Earth 

Engine’s efficiency (GEE) when categorizing 

different crops using multi-spectral datasets of 

Sentinel-2 MSI as well as Landsat 8 OLI satellites. 

The proposed methodology trained dataset using 

different methods such as SVM, RF, DT, GTB and 

CART. Moreover, better accuracy as compared to 

previous research using above same techniques. 

Most importantly, emphasizes the numerous 

advantages of Landsat and sentinel imagery for 

various classifiers. GTB classification in both 

imagery (Landsat and Sentinel) offers the highest 

classification accuracy than other classifiers. Flow 

charts are shown in Fig. 4. 

The steps in this research's approach were as 

follows: 

 Use the GEE Platform to get the Sentinel-2 MSI 

as well as Landsat 8 OLI dataset by filtering the 

area of interest such as a study area. 

 Clipping an image to 𝑡 intended research area 

(using latitude and longitude) and filtering the 

image by choosing the more cloud free day 

obtainable between December 2020.  

 The crop characteristics are identified using 

True Color and False Color computed images. 

 Feature collections were created by choosing 

training points based on ground dataset that was 

gathered using an android application running 

on a smartphone. 

 All six classes—urban, water, vegetation, 

wheat, mustard and other crops—were chosen. 

 On the basis of the feature collection collected 

as depicted in Fig. 3, training data sets (80%) 

were produced. 

 Several ML methods, including RF, CART, 

DT, SVM as well as GTB are employed to 

categorize the image using GEE after the 

production of training datasets. 

In addition, Landsat 8 OLI as well as Sentinel-2 

MSI dataset (December 2020) are compared, 

based on OA and kappa coefficient.   
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      Figure 3. Overlaid feature space on FCC 

 

Table 2. Crop Classes 

Data Description 

Urban Residential area, Industrial, 

commercial land services, built-up 

and utilities 

Water Canals, reservoirs, river, and pond 

Vegetation Trees 

Wheat Wheat crops 

Mustard Mustard crops 

Other 

crops 

Rice, Barley(jao), Maize(makka), 

chickpea(chana), Green 

peas(matar), pink lentils (masoor 

daal), pigeon pea (Arhar daal) 

 

Table 2 shows types of classes. Urban shows built 

up areas, residential, industrial as well as 

commercial area. Water class shows canals, rivers, 

ponds as well as reservoirs. Vegetation class shows 

trees. Wheat class shows wheat crops, Mustard 

class shows mustard crops land. One class shows all 

types of crops which are not mustard and wheat 

comes in other classes like barley, maize, chickpea 

pea etc. 

 
Figure 4. Crop Classification using GEE Method 
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Results  

Accuracy Assessment: 

Analysis of different types of accuracy using 

different methods such as GTB, RF, CART, DT and 

SVM on Landsat and Sentinel 2 MSI dataset. For 

GTB, DT, CART, Random Forest and SVM 

classification, accuracy has been calculated on a 

user, producer and overall basis. Along with other 

courses like Urban and water, vegetation and Other 

Crops, accuracy assessment has taken major 

subjects like Wheat and Mustard. Overall accuracy 

for SVM was found to be 66.58%, while CART, 

RF, DT and GTB employing machine learning 

techniques were found to be 81.41%, 82.53%, 

78.09% and 86.79% respectively (Table 8). 

Additionally, the F parameter was calculated using 

several classifiers. Additionally, GTB outperformed 

DT, RF, CART and SVM classifiers. Accuracy is 

calculated using eq. 2. Table 3 to Table 7 shows 

confusion matrix of all methods. Table 8 shows the 

overall accuracy59 and kappa of Landsat 8 OLI. 

  Accuracy =
(Tpp+ Tnn)

(Tpp+ Tnn+Fpp+Fnn)
                              1 

 

Where Tpp represents True positive, Tnn represents 

True negative, Fpp represents False positive and 

Fnn represents False negative. 

Overall accuracy =
sum of diagonal element

Total number of samples
∗ 100   2 

A statistical test to evaluate an accuracy of 

classification yields the kappa. Kappa essentially 

evaluates whether the categorization outdone 

simply randomly assigning values, whether it 

achieved enhanced than random.  

Kappa =    
(observed correct− expected correct) 

(1− expected correct)
          3 

Where observe correct, represents accuracy reported 

in overall accuracy and expected correct represents 

correct classification 

(egyankosh.ac.in/bitstream/123456789/39544/1/Unit-

14.pdf). 

Table 3.  Confusion matrix of GTB method for Landsat 8 OLI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy(%) 

Urban 91 3 4 0 1 0 99 91.91 

Water 2 25 3 0 0 0 30 83.33 

Vegetation 1 0 51 4 2 1 59 86.44 

Wheat 3 0 9 84 5 0 101 83.16 

Mustard 2 0 2 3 99 0 106 93.39 

Other crops 0 0 3 4 2 5 14 35.71 

Column Total 99 28 72 95 109 6 409 - 

Producer ‘accuracy (%) 91.91 89.28 70.83 88.42 90.82 83.33  OA       86.79 
 

Table 4. Confusion matrix of RF method for Landsat 8 OLI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy (%) 

Urban 99 0 1 0 0 0 100 99 

Water 2 32 4 1 0 0 39 82.05 

Vegetation 4 2 60 17 4 2 89 67.41 

Wheat 5 0 12 78 2 1 98 79.59 

Mustard 1 0 1 6 93 0 101 92.07 

Other crops 0 0 6 3 3 2 14 14.285 

Column Total 111 34 84 105 102 5 441 - 

Producer ‘accuracy (%) 89.18 94.11 71.42 74.28 91.17 40  OA     82.53 
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Table 5. Confusion matrix of CART method for Landsat 8 OLI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 83 2 6 7 1 0 99 83.83 

Water 1 28 1 0 0 0 30 93.33 

Vegetation 1 4 44 6 2 2 59 74.576 

Wheat 5 1 13 78 2 2 101 77.22 

Mustard 3 1 1 5 94 2 106 88.67 

Other crops 1 1 1 3 2 6 14 42.85 

Column Total 94 37 66 99 101 12 409 - 

Producer ‘accuracy (%) 88.29 75.67 66.66 78.78 93.06 50 

 

OA        81.41 

 

Table 6. Confusion matrix of DT method for Landsat 8 OLI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy (%) 

Urban 83 0 6 5 3 0 97 85.56 

Water 4 25 6 0 0 2 37 67.56 

Vegetation 2 0 45 14 2 0 63 71.42 

Wheat 5 0 8 74 7 10 104 71.15 

Mustard 2 0 7 1 97 2 109 88.99 

Other crops 1 0 2 2 1 4 10 40 

Column Total 97 25 74 96 110 18 420 - 

Producer ‘accuracy (%) 85.56 100 60.81 77.08 88.18 22.22 OA      78.09 

 

Table 7. Confusion matrix of SVM method for Landsat 8 OLI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 92 0 0 6 1 0 99 92.92 

Water 4 22 0 4 0 0 30 73.33 

Vegetation 3 0 20 35 1 0 59 33.89 

Wheat 13 0 0 81 7 0 101 80.19 

Mustard 4 0 4 18 80 0 106 75.47 

Other crops 2 0 0 11 1 4 18 22.22 

Column Total 118 22 24 155 90 10 413  - 

Producer ‘accuracy (%) 77.96 100 83.33 52.25 88.88 40 

  

 OA         66.58 

 

All above table from Table 3 to Table 7 shows 

confusion matrix of all methods (GTB, RF, CART, 

DT, SVM). Diagonal values shows correct 

prediction (correct classified) while other than 

diagonal specific to class shows misclassified 

(wrong prediction). 

Table 8. Overall Accuracy of Landsat 8 OLI 

S.NO Classifier                          OA 

% 

Kappa 

1 GTB 86.79 0.83 

2 RF 82.53 0.77 

3 CART 81.41 0.76 

4 DT 78.09 0.72 

5 SVM 66.58. 0.61 

In this section, shows an analysis of multispectral 

datasets like Sentinel 2 MSI as well as Landsat 8 

OLI. For experimentation purposes, GEE is used to 

implement. It runs on an Intel Core i3 7th 

generation processor held 8 GB of RAM. Now first 

describe the analysis of Landsat 8 OLI using RF, 

DT, SVM, GBT and CART. This study used 

Google Earth Engine platform for this purpose. 

Dataset is considered in the image form. Dataset 

was split into train and test with 80%-20% ratio 

respectively. Predicting a variable that is categorical 

by many independent attributes, uses classification 

models. It has six classes such as wheat, mustard, 
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vegetation, urban area, water body and other crops. 

Trained CART, DT, RF, GTB and SVM models on 

train datasets that consist of all the features. PA as 

well as UA also calculated using eqs. 4 and 5.Table 

9 shows other accuracy such as PA and UA of 

Landsat 8 OLI. 

Producer Accuracy =
Total number of  correct pixel in a category 

Total number of pixel of that category derived from the reference data (row data)
                     4 

 

User Accuracy =
Total number of  correct pixel in a category 

Total number of pixel of that category derived from the reference data (column data)
                     5 

Table 9. PA and UA Accuracy of Landsat 8 OLI. 

 CART RF GTB SVM DT 

Classes PA %      UA% PA %       UA PA %     UA% PA%        UA% PA%      UA% 

Urban 88.29        83.83 89.18        99 91.91       91.91 77.96         92.92 85.56       85.56 

Water 75.67      93.33 94.11        82.05 89.28       83.33 100            73.33 100          67.56 

Vegetation 66.66      74.57 71.42       67.41 70.8         86.44 83.33         33.89 60.81       71.42 

Wheat 78.78      77.77 74.28       79.59 88.42       83.16 52.25         80.19 77.08       71.15 

Mustard 93.06      88.67 91.17       92.07 90.82       93.39 88.88         75.47 88.18       88.99 

Other crops 50          42.85 40           14.28 83.33       35.71 40              22.22 22.22         40 

 

Classified Map: Fig. 5 to Fig. 9 shows classified 

map of Landsat 8 OLI and also Landsat classified 

map for SVM, DT, CART, RF and GTB all 

methods. In classified map red color is used for 

urban area, blue color is used for water bodies, 

green color is used for vegetation, orange is used for 

wheat, yellow is used for mustard and cyan color 

shows other crops area. Images that have been 

classified are displayed using the various classifiers 

listed above while using GEE in the code editor 

(developers.google.com/earth-engine/tutorials). 

 
 Figure 5. Crop Map using SVM 

 
Figure 6. Crop Map using CART 
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Figure 7. Crop Map using RF 

 
Figure 8. Crop map using GTB 

 
Figure 9. Crop Map using DT of Landsat 8 OLI 

Classified Map and Various Accuracy of Sentinel 

2 MSI 

Table 10 to Table 14 shows confusion matrix of 

various methods (GTB, RF, CART, DT and SVM). 

Table 15 shows kappa and overall accuracy for 

classification of Sentinel dataset for Dec 2020 

season. GTB achieved 84.23%, SVM 84.06, RF 

82.35, DT 75.29%, and CART 75.29%. Other 

accuracies such as PA and UA are shown in Table 

16.  Fig. 10 to Fig. 14 shows a sentinel classified 

map for all methods. In classified map red color is 

used for urban areas, blue color is uses for water 

bodies, green color is uses for vegetation, orange is 

uses for wheat, yellow is uses for mustard and cyan 

color is uses for other crops areas. Overall Accuracy 

of Sentinel 2 is also calculated using equation 2 as 

well as kappa coefficient is calculated using eq.  3.  

Table 15 shows overall accuracy of Sentinel 2 MSI. 

Table 10. Confusion matrix of GTB method for Sentinel 2 MSI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 54 0 0 3 0 0 57 94.73 

Water 1 59 5 2 0 0 67 88.05 

Vegetation 1 9 28 10 0 0 48 58.33 

Wheat 6 1 3 122 11 1 144 84.72 

Mustard 1 0 0 7 92 0 100 92 

Other crops 0 0 0 5 1 3 9 33.33 

ColumnTotal 63 69 36 149 104 4 425 

 Producer ‘accuracy (%) 85.71 85.50 77.77 81.87 88.46 75 OA    84.23 
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Table 11. Confusion matrix of RF method for Sentinel 2 MSI 

Table 12. Confusion matrix of CART method for Sentinel 2 MSI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 47 3 3 2 2 0 57 82.45 

Water 1 53 7 5 1 0 67 79.10 

Vegetation 1 14 22 9 0 2 48 45.83 

Wheat 4 3 4 116 10 7 144 80.55 

Mustard 1 0 1 15 81 2 100 81 

Other crops 0 0 0 7 1 1 9 11.11 

ColumnTotal 54 73 37 154 95 12 425 

 Producer ‘accuracy (%) 87.03 72.60 59.45 75.32 85.26 8.33 OA        75.29 
 

Table 13. Confusion matrix of DT method for Sentinel 2 MSI 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 47 3 3 2 2 0 57 82.45 

Water 1 53 7 5 1 0 67 79.10 

Vegetation 1 14 22 9 0 2 48 45.83 

Wheat 4 3 4 116 10 7 144 80.55 

Mustard 1 0 1 15 81 2 100 81 

Other crops 0 0 0 7 1 1 9 11.11 

Column Total 54 73 37 154 95 12 425 

 Producer ‘accuracy (%) 87.03 72.60 59.45 75.32 85.26 8.33 OA           75.29 
 

Table 14. Confusion matrix of SVM method for Sentinel 2 MSI 

 

The above Tables from 10 to Table 14 show the 

confusion matrix of all methods (GTB, RF, CART, 

DT, SVM). Diagonal values show correct prediction 

(correct classified) while other than diagonal 

specific to class shows misclassified (wrong 

Classes Urban Water Vegetation Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 53 1 1 2 0 0 57 92.98 

Water 2 57 5 2 1 0 67 85.07 

Vegetation 0 9 33 6 0 0 48 68.75 

Wheat 9 2 9 114 10 0 144 79.16 

Mustard 1 0 0 8 91 0 100 91 

Other crops 0 0 0 5 2 2 9 22.22 

ColumnTotal 65 69 48 137 104 2 425 

 Producer ‘accuracy (%) 81.53 82.60 68.75 83.21 87.5 100   OA          82.53 

Classes Urban Water Vegetation 

 

Wheat  Mustard 

Other 

crops 

Row 

Total 

User’s 

Accuracy 

(%) 

Urban 53 1 1  2 0 0 57 92.98 

Water 2 57 6  2 0 3 70 81.428 

Vegetation 1 7 35  5 0 0 48 72.91 

Wheat 5 2 2  124 11 0 144 86.11 

Mustard 1 0 0  4 95 0 100 95 

Other crops 0 1 1  6 1 5 14 35.71 

Column Total 62 68 45  143 107 8 433   

Producer ‘accuracy (%) 85.48 83.82 77.77 

 

86.71 88.78 62.5 

  

    OA             84.06 
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prediction). The above Tables 10 to Table 14 

confusion matrix are conducted for Sentinel 2 MSI. 

Table 15. Overall Accuracy and Kappa of 

Sentinel 2 MSI 
S.NO Classifier OA 

% 

Kappa 

1 GTB 84.23 0.79 

2 RF 82.35 0.77 

3 CART 75.29 0.67 

4 DT 75.29 0.67 

5 SVM 84.06 0.81 

 

Producer and User accuracy calculated using eqs. 4 

and 5. Different types (PA, UA) of accuracy are 

shows in Table 16 for Sentinel 2MSI dataset.  

 

 

 

 

 

 

  

 

 

 

 

 

 

Table 16. PA and UA accuracy of Sentinel 2 MSI dataset  

 CART RF GTB SVM DT 

Classes PA %          UA% PA %         UA% PA %         UA% PA%            UA% PA%         UA% 

Urban 87.03          82.45 81.53          92.98 85.71           94.73 85.48        92.98 87.03          82.45 

Water 72.60         79.10 82.60          85.07 85.50           88.05 83.82         81.42 72.60         79.10 

Vegetation 59.45          45.83 68.75          68.75 77.77           58.33 77.77         72.91 59.45         45.83 

Wheat 75.32           80.55 83.21          79.16 81.8 7          84.77 86.71         86.11 75.32         80.55 

Mustard 85.26                  81 87.51                91 88.46                92 88.78               95 85.26         81 

Other crops 
8.33              11.11 100              22.22 75                33.33 62.51            35.71 8.33          11.11 

 

Classified Map for Sentinel 2 MSI: Fig. 10 to Fig. 

14 shows classified map for Sentinel 2 data. Fig. 10 

to Fig. 14 shows Sentinel 2 classified map for all 

methods. In classified map red color is used for 

urban area, blue color is used for water bodies, 

green color is used for vegetation, orange is used for 

wheat, yellow is used for mustard and cyan color 

shows other crops area. 

 

 
Figure 10. Crop Map using SVM 
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Figure 11. Crop map using CART 

 
Figure 12. Crop map using RF 

 
Figure 13. Crop map using GTB 

 
Figure 14.Crop map using DT of Sentinel 2 MSI 

To train datasets using different methods such as 

SVM, RF, DT, GTB and CART with the same 

training and testing data. During classification 

process this can help selecting the best dates for the 

remote sensing image the above Fig. 5 to Fig. 9 

show the result of Landsat 8 OLI image 

classification by GTB, RF, CART, DT and SVM 

methods. The classes in the crop maps are six as 

urban, vegetation, water, wheat, mustard, and other 

crops. The OA is computed. Tables 8 and 9 shows 

the accuracies of Landsat 8 OLI classification using 

different methods. GTB gives the highest accuracy 

in both datasets. 
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Figure 15. Overall accuracy and kappa coefficient of Landsat 8 OLI and Sentinel 2 MSI 

 

Table 17. Comparative table of Landsat 8 OLI and Sentinel 2 MSI dataset on the bases of F1 Score 
S.NO Methods Classes F1 Score using Landsat 8 

OLI Dataset (%) 

F1 Score using Sentinel 2 

MSI Dataset (%) 

1 Gradient Tree 

Boosting 

Urban 0.96 0.96 

Water 0.93 0.93 

Vegetation 0.94 0.94 

Wheat 0.95 0.95 

Mustard 0.96 0.96 

Other crops 0.76 0.76 

2 Random 

Forest 

Urban 0.97 0.97 

Water 0.96 0.96 

Vegetation 0.96 0.94 

Wheat 0.97 0.96 

Mustard 0.98 0.98 

Other crops 0.90 0.81 

3 Classification 

and 

Regression 

Tree 

Urban 1 1 

Water 1 0.99 

Vegetation 1 0.99 

Wheat 1 1 

Mustard 1 1 

Other crops 1 1 

4 Decision Tree Urban 1 0.99 

Water 1 1 

Vegetation 1 1 

Wheat 1 1 

Mustard 1 1 

Other crops 1 1 

5 Support 

Vector 

Machine 

Urban 0.85 0.99 

Water 0.75 0.98 

Vegetation 0.80 0.99 

Wheat 0.58 1 

Mustard 0.83 1 

Other crops 0.52 0.99 
 

In both qualitative and quantitative ways, a detailed 

analysis and discussion were carried out. This 

looked at the performance and possibility of utilized 

GEE to speed up remote sensing and GIS 

procedures. For crop classification divided total 

area in to six classes as urban, vegetation, water, 

wheat, mustard, and other crops. GTB has 

repeatedly demonstrated good accuracy results 

based on these data. Table 8 shows OA and kappa 

for classification of Landsat 8 OLI data for 
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December 2020 season. To applies different 

methods for obtained consistent result. The finding 

shows in Table 4 the overall accuracy are GTB 

achieved 86.79%, RF 82.53%, CART 81.41%, DT 

78.09% and SVM 66.58% for Landsat 8 OLI. Fig. 

15 represents graphical view of overall accuracy for 

all methods, which can easily compared to both 

sensors. 

Discussion 

In order to produce a crop map easily compare the 

outcome with both sensors Sentinel 2 MSI as well 

as Landsat 8 OLI. Earlier studies were more 

focused on other regions and only one sensor 

(Sentinel 2 or Landsat 8) are used28, 32. In previous 

research, only one sensor26. Sentinel-2 MSI is 

distinctive multi-spectral band that has received a 

lot of interest since its 3 red-edge bands can provide 

a wealth of spectrum data for monitoring 

vegetation. Integrating various bands improves crop 

classification overall accuracy. The most crucial 

elements in the multi-spectral crop classification 

were the RE-1 as well as SWIR-1 of Sentinel-2. 

Sentinel 2 MSI B3-Red, B4-Green and B8-NIR are 

utilized and Landsat 8 OLI bands 2 through band 7 

bands are utilized. The research is achieving more 

accuracy and classifying crop of Mathura region 

due to highly cultivated area and also comparing the 

outcome with multiple sensors. It achieved a high 

F1 score which is shown in Table 17 in all methods 

as compared to previous study 32. Five ML methods 

(SVM, DT, GTB, CART as well as RF) have been 

directly compared to see how well they perform 

using the specified performance assessment 

measures. Different data sets are examined for each 

algorithm's training and testing phases as model 

input.  

The error variance between the actual and projected 

values is typically used to gauge the model 

accuracy, but other research employed confusion 

metrics to analyze performance which is shown in 

Table 3 to Table 7 and Table 10 to Table 14. It 

focused the work to estimate the effect of spectral-

temporal variables on crop mapping in Mathura 

using GEE platform. GEE provide easy and 

powerful platform for handling huge amount of RS 

imagery used for crop mapping. In both Sensors, 

GTB achieved 86.79% overall accuracy in Landsat 

and 84.23% in Sentinel. While another method such 

as RF, CART, DT and SVM also achieve good 

accuracy. Compare the outcome of various 

classifiers such as CART, RF, DT, SVM and GTB 

by calculating different factors such as OA, PA, 

UA, and Kappa Coefficient and also classified map 

for all methods. Different machine learning 

methods have been tried in various regions in order 

to find adequate models for an accurate prediction 

due to the increased demand for crop mapping. As a 

result, research and development of an expert model 

for applications including crop mapping are 

ongoing challenges. 

 

Conclusion 

The aim of the research is to assess crop 

classification in Mathura using GEE platform. GEE 

provide an easy and powerful platform for handling 

huge amount of remote sensing imagery used for 

crop mapping. With the help of GEE platform, one 

can easily access remote sensing data and can apply 

different types of classification methods with 

minimum interaction and effort. The GEE platform 

offers many classification methods. GEE provides a 

good performance in allowing access to RS 

products based on cloud platform for satellite data 

flow. In both Sensors, GTB achieved 86.79% 

overall accuracy in Landsat and 84.23% in Sentinel. 

While another method such as RF, CART, DT and 

SVM also achieve good accuracy. Compare the 

performance of various classifiers such RF, DT, 

SVM, CART, GTB  by calculating different factors 

such as OA, PA, UA and Kappa coefficient and also 

classified map for all methods. In view of F1 score 

this study achieved good F1 score as previous 

study32. It is conducted not just to investigate ML 

methods but also to compare the outcome with 

multiple sensors. Furthermore, compared pixel 

based crop mapping methods in Mathura and 

investigated the effectiveness of the GEE cloud 

platform for extensive crop mapping. Furthermore, 

GEE delivered excellent performance in facilitating 

access to RS images through the cloud platform as 

well as great computational abilities that may assist 

in dealing with large-scale crop mapping. It will 

analyze different Geo-location with various deep 

learning methods to train our method for crop 
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classification. It is limited to the Mathura city and 

its agricultural regions only. If similar agricultural 

regions with the similar hydro-meteorological 

conditions exists then this study might apply. And 

some limitations, like dataset resolution (temporal 

and spatial), no field expeditions in especially the 

past time. It is limited to noisy or cloudy data. 

Future research could use microwaves and several 

dates of satellite data to extend the current 

investigation. There is also scope of cooperation in 

the outcome with more sensors and can utilize 

multiple dates with multiple regions.  

List of abbreviations: 

GTB  Gradient Tree Boosting 

DT  Decision Tree 

ML  Machine Learning 

SVM  Support Vector Machine 

CART Classification and Regression Trees 

RF  Random Forest 

PA  Producer Accuracy 

TOA  Top of atmosphere 

UA  User Accuracy 

GB  Gradient Boosting 

GEE  Google Earth Engine 

MSI  Multi Spectral Images 

OLI  Operational Land Imager 

GIS Geographical Information System 

IDE    Integrated Development Environment 
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 الزراعة في الأطياف متعددة للبيانات الفعال التصنيف في الآلي التعلم مقارنة دراسة

 5سيفاسانكارثوتا ، 4سوراج كومار سينغ ،3فارون نارايان ميشرا ،2شروتي كانجا ،1بريانكا غوبتا

 .قسم علوم وهندسة الحاسوب، جامعة سوريش جيان فيهار، جايبور، الهند1
  قسم الجغرافيا، كلية البيئة وعلوم الأرض، جامعة البنجاب المركزية، باتيندا، البنجاب، الهند.2
 .جامعة أميتي، نويدا الهند ،  AIGIRS)(معهد أميتي للمعلوماتية الجغرافية والاستشعار عن بعد3
 .قسم مركز التنمية المستدامة، جامعة سوريش جيان فيهار، جايبور، الهند4
 .، نيمرانا، راجاستان، الهندNIITقسم نظم المعلومات الجغرافية، جامعة  5

 

 ةالخلاص

خرائط محاصيل موثوقة ودقيقة لتحقيق الأمن الغذائي من المستوى الإقليمي إلى المستوى العالمي. يؤدي التوفر  يتطلب أن تكون

المتزايد لصور الأقمار الصناعية إلى مشكلة "البيانات الضخمة" أثناء إنتاج خرائط المحاصيل. الآن، اكتسبت المنصات السحابية 

مناطق واسعة. الهدف الرئيسي من البحث هو تحليل تصنيف المحاصيل باستخدام مختلف  الكثير من الاهتمام لتصنيف المحاصيل في

(، وشجرة القرار RF(، والغابات العشوائية )GTB(، وتعزيز شجرة التدرج )SVM( مثل آلة دعم المتجهات )MLالتعلم الآلي )

(DT( بالإضافة إلى التصنيف والتصنيف. أشجار الانحدار )CARTعلى منصة محر ) كGoggle Earth.  الهدف هو استكشاف

 Sentinel( عند تصنيف المحاصيل المختلفة باستخدام مجموعات البيانات متعددة الأطياف من GEE) Google Earthكفاءة محرك 

2 MSI  بالإضافة إلى الأقمار الصناعيةLandsat 8 OLI ند. لرسم خرائط المحاصيل في منطقة ماثورا في ولاية أوتار براديش باله

-Sentinel 2 MSI ("2020-12و Landsat 8 OLI( لمجموعات بيانات %5تم استخدام أفضل صورة خالية من السحابة )أقل من 

. GEE"( لتصنيف المحاصيل بمساعدة التصفية التلقائية، أي النسبة المئوية. الملكية السحابية على منصات 02-20-0202"، و"26

والحصول عليها وتوضيحها وكذلك معالجتها المسبقة لمجموعة بيانات الأقمار  GEEعلاوة على ذلك، يمكن تنظيم أداء منصة 

علاوة على ذلك، يتم استخدام مصفوفات  الصناعية بقوة كبيرة. تم استخدام النقاط كمساحات مميزة مثل مجموعات بيانات التدريب.

 Sentinel 2 MSIمنتج والمستخدم( ومعامل كابا. بالإضافة إلى ذلك، قم بمقارنة نتائج مجموعة البيانات )الارتباك لتقييم الدقة )دقة ال

بالإضافة إلى معامل كابا. تم العثور على أعلى وصول حر  F1( ودرجة OA( على أساس الدقة الإجمالية )Landsat 8 OLIو

 Landsat 8( لصورة 66.5%) SVM( و78.1%) RF (82.5%) ،CART (81.0%) ،DT( يليه 86.7%) GTBباستخدام 

OLI بالنسبة لصورة .Sentinel 2 حققت ،GTB  يليها  %0..2أعلى وصول وصول بنسبةSVM (84%) ،RF (82.3%) ،DT 

كان جيداً بين جميع المصنفات في رسم  GTB( على التوالي. على أساس البحث، وجد أن أداء 75.0%) CART(، و75.2%)

 باستخدام مجموعتي البيانات متعددة الأطياف.خرائط المحاصيل 

 .(، صور الأقمار الصناعيةRS(، الاستشعار عن بعد )ML(، التعلم الآلي )GEEمحرك جوجل إيرث ) الكلمات المفتاحية:
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