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Abstract

This study delves into the properties of the associated act V' over the monoid S of sinshT. It examines
the relationship between faithful, finitely generated, and separated acts, as well as their connections to
one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules
over aring is explored. Specifically, it is established that V;,,snr functions as an act over S if and only if
Vsinsnr functions as module, where T represents a nilpotent operator. Furthermore, it is proved that
when T is onto operator and Vg, IS finitely generated, Vis guaranteed to be finite-dimensional.
Prove that for any bounded operator the following, Vg;,snr IS acting over S if and only if Vgi,snr 1S @
module where T is a nilpotent operator, Vginsht IS @ faithful act over S, where T is any bounded linear
operator, if T is any bounded operator, then Vg;,spt IS Separated, if Vi,spr IS Separated act over S,

Then T is injective, if a basis K = {vj, j € A} for V, then every element w of V;,,cpr Can be composed
n

i n o mi
as w = lim ( 0 Z (I—T,))Z ajvj=_lim(pn (T) + pp(=T)). v, for some v in V, and
i=0 U jen n-o

n—oo i=0 il
put T as similar to any operator © from 9t to 9t, and V as a finite dimensional normed space, then
Vsinsh 1S Noetherian act over S if S is Noetherian.

Keywords: Associated act V over monoid of sinshT, Bounded linear operator, Faithful act over
monoid, One-to-one operator, Separated acts over monoid.

Introduction

Consider a nonempty set A and a monoid S. Let p:
A x S —A be defined as p(a, s) = (a, S) — as, such
that (as)t = a(st). This leadstoa=a. 1, where s, t €

consider a polynomial ring R = F[x] with
coefficients in F. Define the function @: R x V—V
such that p(T)v=p.v=3(p, v), where T is a linear

S, and a € A. As being a right act®. Moving
forward, let us examine a Hilbert space H over a
field F (where F can be either real or complex), and
let T be a bounded linear operator on H. The

exponential operator eT is e”= Z % where T°
n=0 """

= |, the identity operator on H. The exponential

operator is well-defined, the sum exists*. Flowing?®,

operator. Here, @ transforms V into a left R-
module, denoted as V. When a bounded operator T
on a Banach-space act as V over a field F, and S =
{e*:x € R} represents the semi-group, the function
u:S xV -V is ef(v) = p(e*v), which
establishes V as a left act over the monoid S,
denoted as V;°. In the context of an act Ag, if for
any X, y, the equation xc = yc implies x =y for any
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right cancellable element c € S, then Agis torsion-
free. Moreover, if S satisfies the ascending chain
condition for right ideals, it is equivalent to being
Noetherian. This condition translates to the
existence of every ascending chain®B; € B, <
Results and Discussion

Definition 1: Let T be a bounded operator on a
Banach-space V over a field F, and consider the
semigroup S = {sinshx : x € R}. Define the
function p from S x V into V as u(sinshx,v) =
sinshT (v), then V is called a left act over S,
denoted as Vi snr-

" ! 3
Putpu( = ) G =14+ GraGre
i=0 °° !
n n 3 ;
n! i=0 i!
3 n
(-T) + & +( T) i +( T)

Proposition 1: If a basis K = {vj, j € A} for V, then
every element w of V¢, Can be composed as

n .
. T)!

w = lim ( Q
n—oo j=g 1!

T e i .
Zi=0 i )Zjaal vi= lim(ps (T) + pn(=T)).

i!

+

v, for some v in V.

Proof: Define p: SxV —V, by p (sinsh X, v) =
sinshT (v) =2 (7 — e™T)(V) =

—(Z (T?l Z (_,—T)l) (v). For w €
i=0 v i=0

i!

1.\ (1)} (1) -
Vamnr thenw =20~ Gr=3 G5 =
=0 L! i=0 L!

3
[I+(T)+ A N - 4

-T2, TP D"
S 0y +T]] (v).

2! 3!

Since K={vj j € A} is a basis for V then

_1 N7 DNy a
w = 2<(Zl=0 i! leo il )) (Z]EAa]V])

3 n
[I+(T)+ (L 8

3!

[l+( T)+(T) +(

Bz €...C B, € B,4q E..., of its right sub acts,
there exists n € N such that 8B,=8,,,=...%. Recall
that an operator T is considered nilpotent if T" =0
for some integer?.

—T) 2
%A”@ng S+ Dy

Dt Dy - X
_% ](ZJEAaJ J)
=M+ 2 Oy
1+(T)—ﬂ+(T)3—'"—%)n‘
' ](Zje/\ajvj) =227+ Z(T) 2%-‘_'"4_
gr):-l)'](ZJEAa] &

3
=T(Zjenajvy) + %(Zje/\ajvj) +
(T T 2n+1
) (Z] €ndj V]) oot E231+1)| (Z] endj V]) +

=Z°°

But when T € B(H) the seriesz iT—:converges in
i=o 1"

(T)21+1
(2i+1)! ( jendj V])

R (T)2i+1

B(H)2. Therefore, z is converge. Thus

i=0 2i+1)!
s (T)2i+1 _

W= ry—r}c}o i=o(21+1)!( jeadyVy) =

lim ( pp(T) — pn(=T)).V, where B(H) is the set

n—»oo

of all bounded operator on H

Lemma 1: V,enr IS act over S if and only if
Vsinsnr 18 @ module where T is a nilpotent operator.

Proof: This follows the same method as the proof
of Lemma 2.4 °.

Proposition 2: If T and S are similar bounded
operators, then Vginsns and Vginsp are isomorphic.

Proof: This follows the same method as the proof
of Proposition 2.5 ©.

Proposition 3: Vg,spt i a faithful act over S,
where T is any bounded linear operator.
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Proof: To show that any bounded operator Vgi,sht
is faithful, consider sinsh x,.sinshT(v) =
sinshx, .sinshT(v). As sinshT is an operator, thus,
sinshT is linear transformation, and
sinsh T(sinsh x; .v) = sinshT(sinshx,.v). But
sinshT is one-to-one 2 So thatsinshx;.v=
sinshx,.v, this implies that sinshx; =
sinsh x,, Vx4, x, # 0. Therefore Vgi,snris faithful
act over S.

Proposition 4: If T is an onto operator and Vginsht
is finitely generated (f . @), then Vis finite
dimensional.

Proof: This follows the same method as the proof
of Proposition 2.8 ©.

Proposition 5: For any bounded operator T, then,

- If T is any bounded operator, then
separated,

VsinshT IS

2. |If, Vgipsnt IS Separated act over S, Then T is
injective.

Proof: (1) Let p # qin Vgpsnt. To prove that
VsinshT 1S Separated, it must be shown that there is
m, n € S, m# n, with n as the identity element,
such that ma # mb. Suppose ma =mb, n # meS,
such that m =sinsh x, n is the identity element, p,
g€ Vginsnr, this gives sinsh x. sinshT(v;) =
sinsh x .sinshT(v,) 3 v4,v, € V,x € R, as
sinshT is an operator, sinshT is linear
transformation, this give sinsh x .sinshT(v,) =
sinsh x.sinshT(v,)s, thus sinshT(sinsh x. v;) =
sinsh T(sinsh x .v,), but sinshT is one to one 2.
Therefore, sinshx.v, = sinshx.v,,thus (v; —
vy)sinshx =0, since sinshx #0. Thus v, =
vy ,thus either sinshT(vy) # sinshT(v,) or
sinshT(v;) = sinshT(v,), but if sinshT(v,) #
sinshT(v,), this give v; # v, this contradcts with
v, = V,, then sinshT(v;) = sinshT(v,), means p
= g which is in contradiction, then VgishtiS
separated act.

(2) Assume that Vg,snr IS Separated, to prove the
operator T is 1-1. Put v, # v, , must show that
T(vy) #= T(v, ). Because vy # v, , thus either
sinshT(v,) # sinshT(v; ) or sinshT(v2) =
sinshT(v1). If  sinshT(v2) = sinshT(vy),
this contradicts with v, # v, (because sinshT is 1-
12), hence sinshT(v;) # sinshT(v, ), but Vgipenr iS

separated act over S then3 e # s, s = sinsh X€ S
such that, sinsh x .sinsh T(v,) #
sinsh x .sinshT(v,), because sinshT is an
operator, then sinshT is linear transformation, thus
sinshT(sinshx.v;) # sinshT(sinsh x. v,),
thus,

(1+(T)+(T)+(T) [I+(T)+(T)+
3
(;) D (sinsh x . vy)# (I+(T)+ @ +
3
O o+ (T + X E

3!
]) (sinsh x .v;), i.e., T(sinshx.vq) +

3 5
Q (sinshx.vq) + Q (sinsh x.vqy) +

-~ #T(sinshx.v;) + O (smsh X.vy) +

%(smsh X.Vy)+ e, hence T(sinshx.vy) #

T(sinsh x .v,), thus Vo # Vi
3 3

and % (sinshx.vq) # % (sinsh x .v,),

implies that = (T?(sinshx .v;) #

%(Tz(sinsh x.v3)), thus (T(T(sinshx.v;)) #

T(T(sinsh X. Vz)).

Proof: Put sinsh X sinshT(v;) =
sinsh x sinsh T(v,), for all cancellable element in
S, sinsh x, thus sinsh T(sinsh x .v,)
= sinsh T(sinsh x .v,), (because sinshT is 1-1).
Therefore, sinsh x.v, = sinsh x.v,, thenv, =v,.
Hence, either sinsh T(v;) = sinshT(v,)
or sinshT(v,) # sinshT(v,), if sinshT(v;) #
sinshT(v,), this contradiction withv,;= v,, then
sinshT(v;) = sinshT(v;), thus Vgi,enTiS torsion
free. (T(sinshx.v;)) # (T(sinshx.v;)), by the
same argument, hence T(v,) # T(vy). Therefore,
T is one to one.

Proposition 6: Let T be a bounded linear operator,
then Vinshr 1S torsion free act over monoid.

Proof: Put sinsh X sinshT(v;) =
sinsh x sinsh T(v,), for all cancellable element in
S, sinsh x, thus sinsh T(sinsh x.v,)
= sinsh T(sinsh x .v,), (because sinshT is 1-1)?
therefore sinsh x .vy = sinsh x.v,, then v; =v,.
Hence, either sinshT(v;) = sinshT(v,)
or sinshT(v,) # sinshT(v,), if sinshT(v;) #
sinshT(v,), this contradicts withv;= v,, then
sinshT(v;) = sinshT(v,). Therefore, Vginsht IS
torsion free.
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If Alis f. g act and S is Noetherian, then A is
Noetherian act over S7-°,

Proposition 7: Put T as similar to any operator ©
from 9t to 9t, and V as a finite dimensional normed
space, then Vg, IS Noetherian act over S if S is
Noetherian.

Proof: Since V is finite dimension, it is a f . g act
over S2, and S is Noetherian, then it is Noetherian

Conclusion

In this work, we have introduced and established
the concept of associated act over the monoid S of
sinshT. The following relationships are proven: If
T and S are similar bounded operators. Then
Vsinshs and Vginspr are isomorphic. When operator
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