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Abstract

An effective method for resolving non-linear partial differential equations with fractional derivatives is
the New Sumudu Transform Iterative Method (NSTIM). It excels at solving difficult mathematical
puzzles and offers insightful information about the behaviour of time-fractional Fisher equations. The
method, which makes use of Caputo's sense derivatives and Wolfram in Mathematica, is reliable, simple
to use, and gives a visual depiction of the solution. The analytical findings demonstrate that the proposed
approach is effective and simple in generating precise solutions for the time-fractional Fisher equations.
The results are made more reliable and applicable by including Caputo's sense derivatives. Mathematical
modelling relies on the effectiveness and simplicity of the NSTIM approach to solve time-fractional
Fisher equations since it enables precise solutions without the use of a lot of processing power. The
NSTIM approach is a useful tool for researchers in a variety of domains since it also offers a flexible
framework that is easily adaptable to other fractional differential equations. It now becomes possible to
examine the dynamics and behaviour of complex systems governed by time-fractional Fisher equations
with efficiency and reliability, opening up new research avenues. The ability to solve time-fractional
Fisher equations efficiently and reliably using the NSTIM approach has significant implications for
various fields such as population dynamics, mathematical biology, and epidemiology. Researchers can
now analyze the spread of diseases or study the population dynamics of species with higher accuracy and
less computational effort. This advancement in solving fractional differential equations paves the way for
deeper insights into the behavior and patterns of complex systems, ultimately advancing scientific
understanding and offering new possibilities for practical applications.

Keywords: Caputo fractional derivative, Fisher equations, Fractional Calculus, Iterative method, Sumudu
Transform.

Introduction

In recent decades, fractional differential equations
have fascinated mathematicians, physicists and
engineering researchers’=. A fractional theory,
which includes fractional derivatives and fractional
integration, can be used to model a wide range of

problems*~’. Various methods have been developed
to solve both linear and nonlinear fractional
differential equations®°, including the Cauchy
reaction-diffusion method, the Adomian
decomposition method(A.D.M.)'?, the homotopy
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method (H.A.M.)*®, the variational method of
iteration (V.1.M.)**%° and the perturbation method of
homotopy (H.P.M.)!e. These methods have been
applied to the Cauchy-diffusion of time-fractional
equations, which are used to model nonlinear
and linear systems in fields such as engineering,
biology, ecology, chemistry, and physics'’°.

The study of investigates solutions for
nonlinear generalized proportional, fractional
functional integro-differential Langevin equations
using fixed point theorems and Ulam-Hyers stability.
It creates a mathematical model to analyse
Wolbachia dispersal among Aedes aegypti
mosquitoes, analysing symmetrical characteristics?®-
22 The model is physically meaningful and assessed
for equilibrium points in the presence and absence of
disease. Eight equilibrium points are determined, and
the basic reproduction number is calculated using the
next-generation  matrix  method.  Numerical
simulations are conducted to evaluate the basic
reproduction number and identify the optimal CI
value for reducing disease spread. The study also
examines the interaction between prey and predator
populations, focusing on the additive Allee effect and
intraspecific competition. The study highlights the
importance of considering precautionary measures in
controlling disease spread, with the rate of
precautionary measures playing a crucial role in
reducing the chance of infection by the Chickenpox
virus=-2,

The authors of an article obtained both
numerical and analytical solutions to the time-
fractional Fisher equations using the New Sumudu
transform iterative method (NSTIM). The benefit of
this new method is that it makes the calculations easy
and gives the most accurate estimate of the exact
answer?-2¢, There are many problems in fractional
derivatives?®®, hydrodynamics®,, chemical
diffusion®?, and option pricing®. Partial differential
equations® can be used to model computational fluid
dynamics®-2¢ and control theory®*“2. Nonlinear
P.D.E.s and processes for finding numerical
solutions to nonlinear problems have gotten much
attention recently (P.D.E.s)**°. The main theme of
this research is focused on the solution and analysis
of a nonlinear time fractional Fisher's equation with
specific boundary conditions.

The analytical method focuses on finding an exact
solution to PDEs, but solving the time fractional
Fisher equation is challenging due to the fractional
derivative. The iterative method, using techniques

like the New Sumudu transform iterative method,
discretizes the equation in space and time, and
updates it iteratively until it converges to the desired
accuracy. The analytical method approximates the
fractional derivative term, while the iterative method
transforms the equation into linear or nonlinear
algebraic equations that can be solved iteratively.

The software Mathematica provides powerful
tools for creating visualizations and graphical
representations of nonlinear time fractional Fisher's
equations. It supports 2D and 3D plotting, graphing,
and interactive visualizations, which aids in better
understanding solutions of Fisher’s equations.

The new Sumudu transform iterative method
offers several advantages, including faster
convergence, improved accuracy and precision, wide
applicability, robustness, memory and computational
efficiency, parallelization, adaptability to problem
structure, trade-offs, comparative analysis, and
experimental results.

Fisher's equation is a mathematical model
that describes the spread of a mutant gene through a
population. It is a partial differential equation with
constant coefficients.

Yo 0) =y 0) +y(E0)(1-y(E w). 1

This model shows the population density by y (¢, w),
and the logistic form is indicated by y(y — 1). In
chemical kinetics and population dynamics, this
equation solves problems like the nonlinear growth
of a population in a habitat of 1-dimensional and the
number of neutrons in a nuclear reaction. Also, one
of the same equations is used in models growth of a
logistic population®®8, the spread of a flame,
neurophysiology, chemical reactions that happen on
their own and branching Brownian motion. In this
article, Fisher’s equation of time-fractional can be
written as follows:

DLy(E w) = ye (8, @) + Ay(E, 0)(1 = y(§, w)), 2
0<p<1,

where Dﬁy({, w) denotes the caputo fractional
derivative (C.F.D.) of order § and A is a parameter
(accurate) 4951,

Background:
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Definition 1: The B € C,Re(B) > 0 R-L fractional
integral I fof order is defined by *°,

(505°F) (@ = (18,1) (@

1 rq_ f(o)
T 1(®’p (q-0)P

dc,(q > p,Re(B) > 0). 3

Definition 2: The R-L fractional derivatives
(ngz) (x) of order B € C,Re(B) > 0 is defined by

50

(,0fz)© = df, L) ©

1
— Y] df’f (€ — )" P1z(c)dc,
c>p, J=Re(B)+1. 4

Definition 3: Function of Mittag-Leffler and
generalation®

ES(Z) Zm 0 F(5m+1) (8 € C Re(S) >
0), 5
Es, is Mittag-Leffler function in two parameters.
[ee] ym
E =Z— ,6 € C,Re(8) > 0,
8,0)(2) F(8m+(1)) w e( )
m=0
Re(w) > 0. 6
Definition 4: A caputo fractional derivative of

function y (&, t) is defined as *,

1 § dly(c,t)
B _ j _ 0 IO,
D:y(t) = c c,
&Y =g ) G0 =
]—1<B<))EN 7
d=— and ] denote the R-L fractional integral

operator of order B > 0 defined as d’ = dd—;) and jg

respectively.

IEY(E. t) = FLBIOE &— C)(B_l)y(c, t)dc,c > 0,z —
1< B<zzeN. 8

Definition 5: The Sumudu transform of a function
f(p), p > 0 is defined as >

[f(p)] f € pf(Vp)dp,V S ( P1; PZ) 9

and f(p) € W,

where W =
Ipl

f(p), | M, P,, P, > 0, |£(p)| < Me", [ 10
if p € (=1)/ x [0,0)

Definition 6: The Sumudu transform of the Caputo
fractional derivative is defined as®?,

S [DPy(r, )| = vES[y(r, w)] -
Z{;é v+ D0, w), j—1<np < J. 11

The New Sumudu transform Iterative

Method (NSTIM):

To illustrate this New lterative Transform of
Sumudu Method 5-%3 take into account a fractional
partial differential equation  with the initial
conditions, which is both non-homogeneous and
nonlinear:

DZL)BZ(Y, w)+ Lz(Y,w) + R(Z(Y, a))) =g(Y,w),
n—1<nf <nz(Y,0) =h(Y) 12

np

where D,” is the fractional Caputo derivative

np A
operator, DZB = ai)nﬁ’ L-operator(linear), R-

operator(non-linear), g (Y, ) is continuous function.

Employing the Sumudu transform to Eq 12 obtain,
s [D3P 200, w)] + SIL(z(Y, ) + R(2(Y, )] =
Slg(Y, w], 13

employing the property of sumudu transformation,
obtain,

S[z(Y, w)] — v ¥4 v Bk (v, 0) +
UnBS[L(Z(Y, w)) + R(Z(Y,w)) -g(, a))] =0.
14

employing the Sumudu transform of inverse to Eq 14,

z2(Y,w) = S~Hw™ YL v Bk (v, 0) —
v"BS[L(Z(Y, a))) + R(Z(Y,cu)) —-g(, cu)] ] . 15

Next, assume that,
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-1
f(Y,w)=8"1|v"8 Z v B+ (k) (Y, 0)
k=0

+v™[g(Y, )] |; 16

N(z(Y,w)) =
—57t v S[R(z(Y, )] 17

K(z(Y,w)) = =57 [v"S[L(z(Y, w))]|. 18
Thus, Eq 15 will be reduced in the following form,
z¥,w)=fY,w)+ Kz, w)) +N(z(,w)). 19

The solution of the equation is given in the series

form,
z(Y,w) = (Z Zm (Y, a))),

m=0

Obtaining

o)

K sz(Y,w) =

m=0

Z K (2 (Y, ).
m=0

20

Operator N (nonlinear) is decomposed as

N(EEo0 zm) = N(zo) + (NI, ) — NI z)}
21

Therefore, Eq 12 can be represented in the following
form, Defining the recursive relation

zo(Y,w) = f(Y, w),
z1(Y,w) = K(ZO (Y,a))) + N(ZO (Y,w)),
Zrp1 (Y, w) = K(zm(Y,w)) +

(N (252 z(r0)) = N (2323 21 (v, @)},

forall r>1
22
ThUS, (Zl + Z2+ ...... +Zm+1) =
K(zg+....+zp) + N(zp+.... +2,) 23

namely,

(oo}

z(Y,w) = Z Zn (Y, w)

m=0
=f +K(Zm=0 zn(Y,®)) +
N(Zrm=0 zm(Y, ) 24
The m-term approximate solution of. Eq 12 is given
by

Zm(Y,w) = zo(Y,w) + z; (Y, w) + - +
Zm—l(Y; (1)) 25

Convergence and Error Analysis:

Theorem 1: Let z,(Y,w) and z,(Y,w) be the
members of Banach space H and the exact solution
of Eq 1 be z(Y,w). The Series solution
Yp=o Zp(Y, w) converges to z(Y, w), if z,(Y,w) <
Az,_1(Y,w) for A € (0,1), that is for any z > 0,3E
such that ||z, 4+, (Y, w)|| < z,Vp,n > E.

Proof: Let u,(Y,w)=2z,(Y,w) +z;(Y,w) +
z;(Y,w) + -+ z,(Y,w) be the sequence of p'"
partial sum of series ¥.7°_ o z, (Y, w).

Now, consider

up+1 (Y, @) —up (Y, )| = [|2p+1 (Y, @)

< A|zp (Y, w)l|
< A|zp—1 (Y, w)|| 26
< || zp-2 (Y, w)|
< AP |20 (Y, w)].
forvn,p € E
Consider,

[up (Y, 0) = un (Y, w)|
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= {1y (Y, @]

= [|(up (Y, w) — up—1 (Y, w))
ity 1 (Y,0) =ty (X))

T (Up-2(Y, @) =ty _3(Y, w))

+ oot (Ung (Y, 0) — up (Y, )|
< up (Y, 0) = up—1 (Y, )]
FUp-1 (Y, 0) = up—_2 (Y, )|

+||(up—2(Y' w) - up—S(Y' w))” 27
+ o (U (V, @) — up (Y, )]
< 2P|z (Y, w)|

+2P7 |2 (Y, )|

+2P72||zo (Y, )|

+ o+ 2P| 2o (Y, )|

= ||zo (Y, w)|| (AP + APl /1”“)

1-AP77
= |lzo (Y, )| (=)™
Since 0 <A<1 and zy(Y,w) is bounded, so
assume that,
— Jp—n
— Y, ;{n+1,
z =120, D7)
The anticipated outcome is achieved.. Also
Yp=o0 Zp(Y, w) is a cauchy sequence in H, which
Results and Discussion
Numerical Examples:

Example 1: Suppose the following nonlinear time
fractional Fisher's equation®*

2%y (Y.B
pEy(rw) =225

9

+6y(1—-y), 0<p<12

The initial condition

1
y(X,0) = v 30

employing Sumudu transform on Eq 29 and using
the initial condition of Eq 30 to obtain,

1

1 92
Sy(Y, )] = rovyr + w7 Sy + 6¥(1 =), 31

aY?

employing the Sumudu transform of the inverse
formula, the following equation is obtained,

imples that there exists z,(Y,w) € H such that
lim z, (Y, w) = z(Y, w). Hence, the proof has been
p—oo

completed.

Theorem 2: Let ZZZO z,(Y, w) be the finite and
approximate solution of z(Y, w). If ||z, (Y, w)|| <

Allzo(Y,w)|| for A€ (0,1), then the maximum
absolute error is

a q+1
120F,0) = ) 2 ()l < T llzo (X, )l

p=0

Proof: ||z(Y, w) — Zg;:o zy, (Y, w)l|

= || Xp=0 zp (Y, )|

< Dp=q+1 |1z (Y, )|

< Yp=q+1 A2o (Y, )] 28
AL+ A+ 2% + )|z (Y, w)]|

A4+1
< T 120(Y, w)l]

Thus, the proof has been completed.

1 _1r 1 o 0%y
Y, 0)= g tS LZShEtoevd -yl
namely,

1 _1r 1 92
y0) = st ST S + ey - »ll

32
According to NSTIM, result obtain;
Vo = 1
0= Tz’

(1+e )i ” 33

Ky, w)] = ST =S5+ 6y(1 - »]ll.

By iteration, the following results are obtained
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1

yO(Y' 0.)) = (1+€Y)2'
1 1 02
y(Y,w)y= S 1[ﬁ5[a$0+63’0(1_y0)]]; 34
ef (0P

(1+e¥)3Tr(B+1)"

_ 1 92 +
Y2 (Y w) = ST 25 S[F2y)

aY?
—1r 1 azyo
. 50eY(—1+2eY) (w?h)
- (1+e¥)* T(2B+1)
_ eY(—1+2eY) (w?2F)
ys(Y,w) =50 (1+eN)* T(2B+1) 36

Therefore, the Operating analytical solution of the
problem in the series form can be obtained as,

yX,0) =y,(Y,w) + y;(Y,w) + -

e (w®)

250eY [5 —6e¥ —15¢Y + 20e3Y —
r(26+1) w3p 4.
I'(B+1)2] (1+eV)ér(3p+1)

12eY -37
Where - Eg (wP) is mittage leffer function defined
by Eq 7.

putting # =1, Eq 29 becomes the following

equation,
2

0%y
y(Y, w) =W—6}’—y

With accurate solution

1
Y, 0) = vy 38

(See Fig. 1and Table 1)

Remark 1: The linear time fractional Fisher
equations are shown above. The estimated results of
fractional Fisher equations of the time linear at
values of £=0.2,0.4,0.6,0.8 and the accurate solution

y(Y,w) = (1+eY)? +10 (1+e")3T(B +1) for f=1 are shown below. Fig 1 (a), in 3-dimension
view and in Fig 1 (b), in 2-dimension forms,
+50 e¥(-1+2¢") (0?F) + respectively. The answer is so simple to discover that
(1+eH* TR2B+1) it is constantly dependent on the values of time-
fractional derivatives.
00

05
1.0

. ; g ) L ; . ; 1
1.0 0.5 0.0

(@)
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wh e
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20f

10F
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e
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d0fF et

C,=

20 F,
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Figure 1. The estimated results of fractional Fisher equations of the time linear at values of
$=0.2,0.4,0.6,0.8 and 1.

The numerical solution obtained using the NSTIM of
5th order approximation of Example 1 is compared
with the accurate solution for f = 1 in Table 1,

which shows the efficiency and effectiveness of the
method.
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Table 1. Error Analysis of Example 1.

B=1
Y o y(NSTIM) y(accurate) [YNSTIM —Yaccurate||
0.2 0.3 0.0539935 0.0539944 9x107%
0.4 0.5 0.26375 0.263795 5x10%

0.6 0.7 0.724381 0.724951 6x107%

0.8 0.9 1.57046 1.57415 4 %107
Example 2: Suppose the nonlinear time fractional 2 4y (@35)

. . Y,w) = (a — 5a? + 8a® — 4a
following Fisher's eq® ys(Y, ) = ( verrey r(3+1)
2 3, 4y T2B+1) (03F)

B _ %y(Yw) —(a® =20 +a )[I‘([>’+1)]2 T(36+1)
Duy(Y,w) =—75—+y(1-y0<p=<1 39 46
The initial condition

y(X,0) = a, 40 w) = (1 - 2a)(a — 5a2 + 8a® — 4a*)
employing Sumudu transform on the Eq 39 and —(a? = 2a3 + a%) r2p+1) (w*f)
using the initial condition of Eq 40 obtain, (F(B+1))* T(45+1)
—2(a—a?)(a—3a® +28%) rea+n) __(o*) :
S[y(Y, O))] —a+ _S[ﬁ + y(l y)] 41 Fa+1)r2a+1) F(4ﬁ+j;

employing the Sumudu transform of the inverse
formula,

— 1
yw)= a+S§ 1[uT35[aYz +y(1 =yl
namely,

y(Yw) = a+ST S22+ y( -yl
42

According to the NSTIM, result obtain

Yo = a,
Kyl = S22 4y -y

By iteration, the following results are obtained

Yo(Y,w) = a,
15 1 92
n,w) = S 1[75[635 +¥o(1 = yo)ll.
= a(l-a F(B+1)
44
— 1 92 +
yo(Y,w) = S~H s[EQu) (53}2“)]]
6 J/o
5] 45
= a(l - a)(1 — 2a) )

r(zﬁ+1)'

Therefore, the analytical estimated results of the
problem in the series form can be found as,

y(Y,w) = yo(Y,w) + y, (Y, w) + - 48
y(Y,w) =
o+ a(1 - )F((;’+)1) +a(l-a)(1- %EZ’ZfL
+(a - 5a® +8a° — 4a®) rgﬁi)
~(@ =20 4 @ FEL;;i)l)
+(1 = 2a)(a — 5a? + 8a® — 4a*)
—7(a% - 2a% + a*) [Eiﬁﬁ])z rg:/:i)
’_2(0[ - aZ)(a —3a%+ 2a3) r(ﬁiiizrzllzﬂ) ng);f-)l)

49

Where - Eg (w?) is mittage leffer function defined
by Eq 7.

putting g =1, Eq
equation,

39 becomes the following

y(Y, w) = aYz+y(1 ¥),

with accurate solution 50
eY
Y 0) = G araen

(See Fig. 2 and Table 2)
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Remark 2: The linear time fractional Fisher
equations are shown above. The estimated results of
the linear time fractional Fisher equations at values
of $=0.2,0.4,0.6,0.8 and the accurate solution for
B=1 are shown below in Fig. 2 (a), in 3-dimension

view and in Fig. 2 (b), in 2-dimension forms
respectively. The solution is so simple to discover
that it is constantly dependent on the values of time-
fractional derivatives.

1
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Figure 2. The estimated results of the linear time fractional Fisher equations at values of
B=0.2,0.4,0.6,0.8 and 1

The numerical solution obtained using the NSTIM of
5th order approximation of Example 2 is compared
with the accurate solution for f = 1 in Table 2,

which shows the efficiency and effectiveness of the
method

Table 2. Error Analysis of Example 2

p=1
Y o y(NSTIM)  y(accurate) [YNSTIM -Yaccuratel
0.2 0.3 0.109149 0.109032 1x107%
0.4 0.5 0.146032 0.143259 3x10°%
0.6 0.7 0.159643 0.139239 2x10792
0.8 0.9 0.204733 0.118578 9x107%

Remark 3: Fig 3(a) and Fig 3(b) depict the absolute
error between estimated and accurate solutions for
B=1. By comparison, it is clear that by computing
additional terms, the efficiency and accuracy of this
method (NSTIM) can be significantly improved. The
authors have used a few iterations in this post.

However, the precision of the estimated solution
could be substantially enhanced if they employed
additional terms. As a result, the recommended
method for solving the linear differential equation is
both precise and efficient.

Page | 2420


https://doi.org/10.21123/bsj.2023.9137

2024, 21(7): 2413-2424
https://doi.org/10.21123/bsj.2023.9137
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal
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@)

(b)

Figure 3. Absolute error between estimated and accurate solutions for g=1.

Conclusion

This research used the novel Sumudu transform
iterative technique to solve linear time fractional
Fisher equations. The novel Sumudu transform
iterative approach (NSTIM) combines NIM and
Sumudu to solve linear time fractional Fisher
equations. The iterative Sumudu transform approach
is more structured and accurate and requires less
numerical calculation, according to the numbers.
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