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RESEARCH ARTICLE

New Approximating Results by Weak Convergence
of Forked Sequences

Bareq Baqi Salman® * Salwa Salman Abed

Department of Mathematics, College of Education Ibn Al-Haitham for Pure Science, University of Baghdad, Baghdad, Iraq

ABSTRACT

The modular function spaces are natural generalization of spaces like Lebesgue space, Orlicz space, Lorentz p-space,
Orlicz-Lorentz space, Musielak-Orlicz space, et al. The function modulars lack basic and flexible properties that norm
functions have, as they are functional lacks homogeneity and subadditivity and, therefore, it might be surprising to
use techniques involving asymptotic centers, normal structure and uniform convexity to obtain fixed point theorems.
The purpose of this paper is to give a new accelerated iterative algorithm for multi valued\single valued mappings
in modular function spaces and to prove some results about their convergence (strong or weak) to a fixed point (or a
common fixed point). Through the work, the modular function satisfies (UUC1) property and -condition. Sometimes the
work required the use of the Opial’s property or demi-closed condition. The intent of this manuscript is proving the
existence and uniqueness of fixed point inducing from weak convergence of a forked iterative scheme. This scheme is
constructed by five-step iterative for (1, p)-firmly nonexpansive (multi\single) mappings in modular spaces with respect
to modular p satisfies (UUC1) property and A2-condition. To obtain these results and other finding, the definitions
of weak convergence, demi-closeness and Opial’s condition format for the case of double sequences. Note that the
authors presented a previous study on the strong convergence of forked double sequences including important results,
see references.

Keywords: Double sequence, Firmly nonexpansive, Fixed point, Strong convergence, Weak convergence

is looking for more applications,* about existences
solution for differential equations. In general, to solve
fixed point problems analytically is almost impossi-

Introduction

Fixed point theory in general is a thriving field for

researchers whose purpose is to work on the exis-
tence of iterative scheme to reach the fixed point
as quickly as possible in different spaces. There are
many applied sciences as well as engineering, that
can be formulated in the form of an integral equa-
tion or differential equation, and this equation can
easily be transferred to the fixed point theory, as
here lies the importance of the fixed point topic to
prove the existence and unique of the solution.! In
addition, the fixed point theory is included in the field
of physics, game theory and economics,? as well as,
many researchers used fixed point theory to study the
stability of the differential equation see,® for whoever

ble, therefore, resorting to the approximate solution
by using iterative scheme for, see,® over the years the
fixed point problem has evolved and many iterative
schemes have emerged to solve the fixed point, re-
search is still ongoing in order to develop algorithms
and obtain faster and more efficient algorithms.® The
notion of modular spaces, as a generalization of met-
ric spaces introduces by Nakano and redefined and
generalized by Musielak and Orlicz that have been
studied by many researchers.”-® Khamsi et al.” the
first to discuss the concept for a fixed point in modu-
lar function spaces. While Kozilowski developed the
fixed point topic extensively in modular function
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spaces see, %12 since then the theory of fixed point

has become prevalent, culminating in the publication
when the researchers worked on the fixed point in
different spaces see.'>!* Recently, Salman and Abed
gave various results for new iterative schemes that
suitable with (%, p)-firmly nonexpansive multivalued
mappings. '° Here, a five-step iterative scheme is in-
troduced that, at first glance, seems forked, but it’s
not hard. This scheme is constructed for (A, p)-firmly
nonexpansive (multi\single) mappings in modular
function spaces. Many different p-weak convergence
results are proved for double scheme of that under
consideration.

Let Q be a nonempty set and X be a nontrivial
o-algebra of subsets of L,. let p be a nontrivial ring
subsets of 2, which means that p is closed with
respect to forming finite union, and countable inter-
sections and differences, Assume further that ENA €
p for any E € p and A € I, let us assume that there
exists an increasing sequence of sets K;, € p such that
Q = UK,. Now E := the linear space of all simple
functions with supports from p and M, := the space
of all extended measurable functions.

In this study, L, will be a modular function spaces
with respect to p € i and L} be its dual of L,. Recall-
ing the following

Definition 1:° If p is convex modular in X, then is
called modular spaces

L,={feM: p(rAf) > 0asr— 0}

The modular spaces L, it could be in the form an
F-norm define by

|If|Ip=inf{a >0: p<£> Sa}

If p is convex and modular F-norm is define
i . (f
Ifl, =inflae>0: p(=) <1
o

F-norm is called Luxemburg norm.
Definition 2:'° Let p : M — [0, oc] possesses the be-
low properties

1- p(0)=0ifandonly if, f =0, p —a.e

2- p(af) = p(f), for « any scalar.

3- plax+ By) < p(x)+ p(y) for every «,8=>0
witho + 8 =1.

p is called a convex modular.

Definition 3:'%'” Let p € %

1- The sequence { f,} is called p-convergent to f if
p(fa—f)—0

2- A sequence {f,} is p-Cauchy sequence if
p(fa— fm) = 0asn,m— oo

3- Aset BC L, is called p-closed if for any f, € L,
the convergence o(f, — f) — 0 and f belongs
to B.

4- Aset B L, is called p-compact if every f, € B,
there exists a subsequence {f,} and f in

p(fnk _f) — 0.

Definition 4:'® A duality pairing in modular function
spaces and denoted by p-duality pairing is define as
(- L, x Ly — R such that (u\h) = h(u), where
uelL,andhel;.

Proposition 1: '8 Let (., .) is the by p-duality pairing
on L, x Ly then

1- (au+ Bv\ h) =a(u\ h) + B{v\h)

2- (u\ ahy + Bhy) = a(u\ h1) + B(u\ h2)
3- (u\h)=0forallueL,,h=0

4- (u\h)=0forallheL;,u=0.

Definition 5:'® In modular spaces let E* the dual for
L,, then h: L, — 2% is called p-normalized duality
mapping if H(u) = {h € L%, (u\ h) = p>(w) = p** W)}

Lemma 1:” Let {on}o21, {02}, and {£,}52 , nonnegative
sequence such that

ont1 < (1 —6p) pn + &n

Where {6,} sequence in (0,1) and {¢,} sequence in
real number such that

o0 o0
Zen < oo and Zgn < 0o, then lim p, is exists.
n—oo

n=1 n=1

Definition 6:'° Let p be a nonzero convex regu-
lar modular defined on © let r > 0, € > 0 define

D(r,e) ={(f,8:f.gelp, pf <1, pf —g=> er}

Let & (r, ¢) = inf{l — %,o (dei—g> 1 (f,g) € D(r, e)}

if D(r,e) #¥ and & (r,e) =1, If D(r,e) =

Note that, p satisfy (UC1) if for every r > 0, € > 0
£(r, €) > 0 then D(r, €) # 0.
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Note that: p satisfy (UUC1) § > 0, € > O there ex-
ists n1(r, €) > 0 depending only on § and ¢ such that
&1(r,€) > n1(r,e) > 0 for any r > §.

Definition 7:%%° A set E CL, is said to be p-
proximinal if for each f € L, exists an element g in
E then (f — g) = dist,(f, E) = inf{p(f — h) : hin E}.

Here, P,(E) denotes the family of nonempty p-
proximinal, p-bounded subset of E,

Cp(E) denotes the family of nonempty p-closed, p-
bounded subset of E,

Hy(.,.)
Hy(A. B) = max [supy. dist, (f. B).
SUPgep diStp (8. A)}A,B € Cp(Lp)

where dist,(f, B) =inf{p(f —g),ge€B}). As it is
known H,(.,.) refers to p-Hausdorff distance on
Cy(E).

Definition 8:2' Let p € % then p has A,-condition
if supp(2f;,D)— 0 as k— oo and D — ¢, and
sup p(fn, D) — 0.

Lemma 2:2? Let p € % and p is (UUC1), let {t,} in (0,1)
be bounded away from 0 and 1, if exists constant m > 0
such that

lim sup,_, .o (fn) < m, limsupn_,.op(g) <m

and lim,_cop(tufn + (1 —ty)g,) = m, then lim,_
,O(fn - gn) =0.

Lemma 3:%Letp € Rand A, B € P,(L,) foreach fin A
there exists g in B then p(f — g) < Hy(A, B).

Definition 9:?' C Lp, let T:E — 2 called satisfy
condition (I) if there exists no decreasing function
#: [0, 00) = [0, 00) with ¥#(0) =0, @(r) > 0 for all
r € [0,00] and p(f — T f) > @(dist,(f, F,(t))) for all
f €E.

Preliminaries

Salman and Abed'® mentioned the definition of
(A, p)-firmly nonexpansive mapping in multivalued
mapping for modular spaces

Definition 10: Let T :E — 2F said to be (1, p)-
firmly nonexpansive multivalued mapping if for A in
0,1)

Hy(Tf, Tg) < p[(1 —)(f — 8 + r(u—)]
ueTf, veTg

Definition 11: A double sequence f; , an modular
spaces in L, is called p-strongly convergence to any
point z in Lp, if lim,_ o po(fikn —2) <€, and write
fen — 2.

Definition 12: A double sequence fi, an modu-
lar spaces in L, is called p-weakly convergence to
any point z in Lp, if there exists A in L} such that
limp o (A fin — A2Z) <€, and write fi, — 2.

Lemma 4: Let fi, be a double sequence in modular
function spaces than every p-strongly convergence is p-
weakly convergence.

Proof: let fi, — z and A in L} then

,}Lrgo P(Afin — A2) < r}ingc P(A(fin —2))
< A lim ;O(fk,n —2)
<e

Hence, fin — 2

Note that: The concept (A, p)-firmly nonexpansive
multivalued mapping denoted by (%, p)-FNMM

Definition 13: Let p € R andE in Ly, E is called sat-
isfying p-Opials condition if for any double sequence
fkn in E p-weakly convergence to a then for all b in E

lim inf p(f , — @) < lim inf p(fi , — b),
n— o0 n—oo

witha #b

The definition of demi-closeness in accordance with
the double sequences is below

Definition 14: Letp € RandEinLy, EandT:E —
2F said to be demi-closed with respect to b in E, if
for any double sequences fi, in E and fi, p-weakly
convergence to a and T (f ) p-strongly convergence
tobthenainE and T(a) =b.

Or, (I — T) is demi closed, if the double sequence
fknInE is p-weakly convergence toainE and (I — T)
p-weakly convergence to 0, then (I — T)(a) = 0.

Now, define Ty : E — 2F and E nonempty convex
subset of L, the following equation

Tif = (A = n )T f +mw (@)
where 7 in (0, 1) and f,w € E.

Let T : E — 2F, and E nonempty convex subset of
L, sequence, here, the sequence {fi ,} introduced by
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the following algorithm

1
Ugn = mrk,n
hk,n = (1 - ,Bn)fk,n + ,Bnuk.n (2)
8k.n = Vin

Jen =1 — an)gn + aWin
fin+1 = My, neN

Where Tkn € P,?k (ficn)s Ven € p/?k (hicn), Wien €
Pli(gn), and my, € P*(Jin), also {an} and {B}
in (0,1).

In this paper study Eq. (1) when the value of w = 0.

Lemma5: Leth:L, — 2% be the p-normalized dual-
ity mapping, there for any f, g € E then forallh(f + g) €
H(f +g) then p*(f +8) = p*(f) + p*(®)

Proof: by Proposition 1 and Definition 5

P?(f+8 = (f+g\h) =(f\h) +(@g\h
= p2(f)+p*(@)

Lemma 6: Leth:L, — 2% be the p-normalized dual-
ity mapping and let f, g two function in modular spaces
if p(f) < p(f + ag) then exists h € H(f) and h(g) > 0
where « in [0,1].

Proof: By Lemma 5 and Definition 5

o(f) < p(f + ag) then p(f)? < p(f + ag)?
< p(f)?+ plag)?
< p(f)? +ap(®?

A

So p(f)? < p(f)* + ah(g), clear h(g) > 0.

Definition 15: Let p € i, E in L, and E is p-closed
and convex said to be p-weakly lower semi continues
if every sequence { f ,} in E p-weakly convergence to
f This implies to p(f) < limp_, o infp(fr.n)-

Lemma 7: Let pe®R, E in L, and E is p-
closed and convex satisfies p-weakly lower semi
continues and {fi,} sequence in E such that
limy 00 p(@ fin + (1 — a)sy — s2) exists for o € [0,1]
then s; = so.

Proof: Let exists fi, i fi.n, two subsequence of fi ,
such that f , j s and fi ,, — s2 then

o fen, + (1 —a)sy —s2 = $1 — 52

By p-is weakly lower semi continues Definition 15

p(s1—82) < r}ingoinfp (afin, + (A —a)s1 —52)
= lim infp (a(frn, —51) + 51 — 52)
nlir(r)loinfp ((ficn —$1) + 51 — 52)
nlir(r)loinfp («(fin, —$1) + 51 —52)

IATA

Let h = (fin, — $1)

By Lemmas 2 to 8 there exists h € H(s; — s2) such
that h(fxn, —51) >0

Now, h(fkn, —s1) = limp_ o h(sz — s1) = —h(s; —
s2)

By Definition 5, then —p2(s; —s2) >0, hence
p2(s1 —s2) <0 and s; = s,.

Lemma 8: Let pe?i and p is (UUCI), A,-
condition, let E be nonempty p-bounded, convex and
p-closed, E C L, and T, Ty : E — 2Eare (1, p)-FNMM,
let {fin} a double sequence define by Eq. (2) then
limy,_, oo p(fi.n — $) exists for all s fixed point.

Proof: by Eq. (2), convexity of p, Definition 10,
Lemma 3 implies that

pfinsr — ) = p(Myn — ) < Hy(Pyt (i), PyE(5))
< A —-m)pUkn—s) 3

,O(Jk,n —s) < p((1- Oln)gk,n + apWin) —$)
< (1 — an)p(gen — ) + anHp(Py* (8k.n), Pt (s))
< [(1- an) + an(l - nk)]p(gk,n —5) (4)

Also,

P@in—3) = pUin — ) = Hp(B* (hien). B (9)) 5
= A —ndphn —s)

Similarly,

p(hk,n —s) = p(lgnuk,n +@1 - lgn)fk,n —5)
1
< Bup <mrk,n - 5) +Q- ,Bn)p(fk,n —s)

BuHp Pyt (fin), Py (8)) + (A — B)p(fin —$)
[Bn(1 —m) + (1 — ﬂn)]P(fk,n —5) (6)

IA A

By Egs. (3) to (6),

p(fk$n+1 —s) < ,unp(fk,n —)

= [A =)A= DA — )
+ (1 - nk)gan(l - ﬂn) + (1 - 77k)3(1 - an),Bn
+ (1 — m) atnfnl
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By Lemmas 1 to 7, limy_, o0 (fkn — $) exists for all
s e E,(T).

Note that: limy_,oop(fin — Sk) is also exists when
sk € F,(Ty) it is possible to prove it in the same way.

Results and discussion

Below p satisfies (UUC1) and A,-condition and E
be nonempty p-bounded, convex and p-closed E C L,
as in (° and®)

Theorem 1: Let pe R, p is (UUCI) and A,-
condition, let E be nonempty p-bounded, convex and

p-closed E CL, and, Ti:E — 2, are be (X, p)-
FNMM, let {fyn} in E define by Eq. (2) then

limy o0 distyp(fien, Pp*(fin)) = O

Proof: By Lemma 8 limy, o p(fx.n — ) exists

Let limp00p(fi.n — ) = k, wherek >0 (7)
By Egs. (4) to (6) the following hold

pPlhen—3) <A —ndp(fu—3) < p(fa—5) =

limy oo p(hen — 5) < k ®
nlim 0(gn—5) <k ©)]
lim p(n—s) <k (10)
pin —5) < Hy(Py* (M), Pyt (s))
< A —n)plhen —3) < p(ficn —5) 11
lim p(en —$) < lim p(fin —$) <k
pWkn —$) < Hy(Pyt(fin), Pyt (s))
< (A =nJdp(ficn —5) < (fin—9) a2
then nlim pUen—s) <k
pWip — ) < Hy(Py*(gk.n), Pyt (s))
< (1 —mJ)pgkn—>5) (13)
= p(gk,n -$) < (fk,n —)
then nlim pwin,—5) <k
p(Myn — 8) < Hy(Py(Ji ), Pa¥(s))
< A =n)pUkn—3) < p(fin—5) (14)

then lim p(my, —s) <k

Let lim o, =«

n—oo

pfinsr —8) = p(Myn — ) < Hy(P (i), PoE(5))

(1 = m)pWUkn —$) < pWUikn —$)

p(anwk,n +Q1 - an)gk,n —)

anp(wk,n -s)+ (1 - O511)0(gk,n —5).

so, im infp(finir —s) < lim inflanp (Wi n — $)
+ (1 - an)p(gk,n —3)]

then, k < nll)nc}o infonpoWin —s) + (1 — )k = ok

INIA A

< « lim infp(w, — )
n—oo

hence, k < lim infp(wy, —5) (15)
n—oo

By Egs. (13) and (14),

lim p(wy, —s) =k (16)
n—oo

pWin —$) < Hp(P;"(gk,n), ng(s)) < p@n—9)
then, k < p(gkn —$) 17)
By Egs. (9) and (17),

lim p(gk,n —5)= k (18)
n—oo

Since, o(gn— ) = p(Vkn—9),
so, lim p(v,—s) =k (19

n— oo
pWin — ) < Hy(Py* (hy ), Py*(5))

< A —ndplhen—5) < plhiy—5)
lim p(vin — ) < lim p(hg, — )
n—oo n—oo
so, k < lim p(hx, —$)

n—oo

(20)

By Egs. (8) and (20), then

lim p(hx, —s) =k (21)
n—oo

By Eq. (21),

nlglgo plhgn—5)=k= nll)rglo P (Bnlik.n
+ A =B fkn—5) =k
nlggo pBn(rin —$)

+ (1 - ﬁn)(fk,n - S) =k

(22)

By Egs. (9), (12) and (22) and Lemma 2,
limy oo p(fkn — Ukn) = O then g, € P;k (fx.n)- Since
diStp/O(fk,n, ng (fn)) =< limn—wo ,O(fk,n - uk,n), limn—>oo
dist ,p(fi.n, Po*(fi.n)) = O. This completes the proof.

Theorem 2: Let, Ty : E — 2E, are be (A, p)-FNMM,
let { fy.n} in E define by Eq. (2) and s1, s, fixed point of
T in E then lim,_, o p(o fi.n + (1 — )s1 — s2) exists.
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Proof: To prove lim, .o p(afin+ (1 —a)sy —s2)
exists

Let yn(a) = p(afk,n + (1 —a)sy —s2)
¥n(0) = (s1 —52), ¥u(1) = (fin — $2)
DefineR, :E — 2E forallne N

Ra(fin) = Py [(1 — @) ficn + @nttkn] = Pp* (M) = Vi
p(Rn(fk,n,l) - Rn(fk.n.z)) = p(vk,n,l - vk,n,Z)

By Lemma 3

< Hp(PI’JTk1 (hk,n,l )9 P;kz (hk,n,2)) (23)
=< ,O(hk,n,l - hk,n,z)

By Definition 3, convexity of p, and Lemmas 2
and 3, hence

p(hk,n,l - hk,n,z) =pl1 - lgn)fk,n,l + nﬁﬁ Tkn1
- (1 - ﬂn)fk,n,Z + Tl'iil]. rk,n,Z

< (1 - ﬁn)(fk,n,l - fk,n,z) + ,Bn(rk,n,l - rk,n,z)

< (1- ﬁn)(fk,n,l -s)+ (1 - ,Bn)(fk,n,z —3)

+ ﬂn(rk,n,l —-s)+ ,Bn(rk,n,z —s)

< (1= B)fen1 —8) + (A — ) finz —5)
+ BeHp(Py" (fin1), Pro(s))

+ BaHp(Py2 (finz2), Pr2(s))

= (fk,n,l - 3) + (fk,n,2 - 3) (24)

Let

Itk iym = Re,ny+m Rieny+m—1 Riemy4m—2 ++ Reen

And

I(k,n)m(fk,n) = f(k,n)er’ I(k,n)m(s) =S

By Egs. (23) and (24) and convexity of p become

p(I(k,n)m(fk,n,l ) _I(k,n)m(fk,n,z)) < )O(I(k,n)m(fk,n,l )—s)
+ p(I(k,n)m(fk,n,z) —5)
< (frn1 =)+ (fenz — ) (25)
Let

b(k,n)m = ,O(I(k,n)m(afk,n + 1 —a)s) - (Od(k‘,n)m(fk‘,n)
+ (1 —a)sy))forallk,nnmeN

By convexity of p
b mym = PUgmymlot ficn + (1 —a)s1] —s1)

- p(aI(k,n)m(fk,n) + (1 —a)sy —s1))
< pl@fin—as1) — plafin—as1) =0

(26)
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Now,

Yk,n)+m = )O(Olf(k,n)er + (1 —a)s; —s2)

= plalgnymfon + 1 —a)sy —s2)

p (e mymfoemy + (1 —a)s1 — 82+ Igemmle foem
A —a)s1] — I pymle femy + (1 —ads1])

bgmym + o Uk wymla faeny + (1 — ads1] — s2)
b(k,n)m + p(af(k,n) + (1 —a)s; —s2)

b(k,n)m + Vk,n(a)

IIAIA + I

Then Y ny4m(@) < yin(@)
So, lim;_, » V(k,n)+m(a) <limp, e Vk,n(a)
Hence, limp_, o p(a fin + (1 — a)s; — s2) exists.

Theorem 3: Let p € % satisfy (I — T) dim closed, let
E be p-compact satisfying p-Opials condition and, Ty :
E — 2E, be (A, p)-FNMM, then {fi,} in E define by
Eq. (2) p-weakly convergence to s, for s unique fixed
point of T in E.

Proof: s e F,(T), by Lemma 8 limu.o p(fin —S)
exists

Since E is p-compact f , has two convergence sub-
sequence fk,nj: fk,nr

Let fx.n p-weakly convergence to s; and s

$1, S92 in E weak limit of fk,nj and fipn,, (I — T) dim
closed at zero

(I —T)(s1) =0 then T(s1) = s1, 51 € Fp(T)

Similarity (I — T)(sz) =0 then T(sz) =53, $2 €
E,(T)

To prove s1 = s

Assume that s; # sy, by p-Opials condition

lim p(fin = 1) = lim p(fin; —s1)

< lim p(fin; —52) < lim p(fin —52)
= nlglgo o fn, — $2)

nlgglo p(ficn, —51)

,}Lnolo o(fxn —51).

IA

Contradiction, then s; = s3, S0, fin p-weakly con-
vergence to unique fixed point s; for T in E.

Theorem 4: Let p € % and (I — T) dim closed at zero
let E be p-compact satisfying p-weakly lower semi contin-
ues and, Ty : E — 2E, are be (A, p)-FNMM, then { fi .}
in E define by Eq. (2) p-weakly convergence to s, for s
unique fixed point of T in E.

Proof: Let fi, p-weakly convergence to s; and s,

(I — T) dim closed at zero

(I—T)(s1) = 0then T(s1) = s1, 51 € F,(T), Similar-
ity (I — T)(s2) = 0 then T(s2) = s2, s2 € F,(T)

Since E is p-compact, fi, has subsequence fi, j P
weakly convergence to s;.
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fin has another subsequence fj ,, p-weakly conver-
gence to sy

By Theorem 2 lim,_ p(ofin+ (1 —a)sy —s2)
exists

And by Lemma 7 51 = 53

Then fi, p-weakly convergence to unique fixed
point s; for T in E.

Theorem 5: Let, Ty : E — 2E, are (A, p)-FNMM and
satisfy condition (I), then { fi ,} in E defined by Eq. (2)
p-weakly convergence to si, for all s; fixed point of T
inE.

Proof: By Lemma 8 limy_,ocp0(fx.n — Sk) exists for all
s is fixed point, if limy_, .o 0 (fk.n — Sk) = 0, nothing to
prove, if limp_, o0 (fin —Sk) =k, k>0
Since P(ficn+1 — Sk) < p(ficn — Sk)»
diStp(fk,n+l ’ Fp(Tk)) =< distp(fn, Fp(Tk))
So limy_, o dist, (fr, F,(Ti)) exists, by applying con-
dition (I) and Theorem 1

limp_. o W(dist, (fn, F,(Ti))
< limy_.o, dist,p(fo, P¥(f)) =0

Since #(0) = 0, hence lim,_. o dist, (fn, F,(Ti)) = 0

By Lemma 8 limy..op(fin—Sk) exists, then
limn—, 00 p (fi.n — Fp(Ti)) exists and s; € F,(Ti)

Suppose that fi ,, subsequence of fi », and zx, se-
quence in F,(Ty)

then

1
p(fk,n - Zk,n) =< ?
since lim inf,_, o disty(fin, Fr(T)) =0

1
p(fk,nj - zk,n) < p(fk,n - zk,n) < i
p(Z(lin)H —1Zk,n) < pGxmy+1 — fin)) + 0(frny — Zkn)
=901 T
1

= 2k—1

pZxmi1 — Zkn) —> 0ask,n — oo

Zkn is p-Cauchy, F,(Ti), Since A, condition, then
p-cauchy< p-converge,

So, 2x » is p-converge to F,(Ty), then p(zxn — sx) —
0

Now,

p(fk,n]’ - sk) S p(fk,nj - Zk,n) + p(zk,n - Sk)9

hence, fi, p-strongly converge to fixed point sgin
Fp(Tk)
By Lemma 4 fi , p-weakly convergence to si

Conclusion

The iterative scheme in Eq. (2) suggested by double
sequence, where prove later that iterative scheme has

weak convergence to the unique fixed point as in The-
orems 3 and 4. While the iterative scheme in Eq. (2)
strong and weak convergence to fixed point provided
that the Condition (I) as in Theorem 5, it is possible
for researchers to deal with this iterative scheme with
different class of mapping and reach the results.
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