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Abstract

This paper, established the existence and uniqueness of common fixed points for Kannan, Reich, and
Chatterjea-type pairs of self-maps in complete b-metric space. In addition, an example and an application
of the existence and uniqueness of common solutions for a system of functional equations arising in
dynamic programming are discussed by using our results

Keywords: b-metric, Chatterjea Contraction, Common fixed point, Fixed point, Kannan Contraction,
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Introduction

The Banach? fixed point theorem, also known as the
Banach contraction theorem or the Banach
contraction principle theorem, was first introduced in
1922. Banach’s fixed point theorem guarantees that
there is a unique fixed point of the mapping in a
metric space and provides a method that can be used
to obtain this fixed point. The theorem became the
basis for the development of the fixed-point theory
by several scientists, such as Kannan?, Chatterjea®,
and Reich®. In 1989, the theory of b-metric spaces
which is an extension of the metric spaces was
introduced by Bakhtin® and popularized and
developed by Czerwik® in 1993.

Materials and Methods

Definition 1%°: Let X be a non-empty set and d: X x
X — R is a real-valued function satisfying:

dy)d(v,w) =0 ifandonly if v=w;
dz) d(v,w) = d(w,Vv);

Debnath and Srivastava have presented a new
existence of the Kannan and Reich fixed point
theorem using Wardowski’s technique’ and some of
the best proximity point results for Kannan
contractive mapping pairs®. Debnath et al ® presents
some results of the fixed-point theorem for the
Kannan, Reich, and Chatterjea contraction functions
that only use metric spaces.

The main aim of this paper is to propose and prove
fixed point theorems of functions using generalized
Kannan, Reich, and Chatterjea contractions in b-
metric spaces.

d3) d(v,w) < d(v,u) + d(u,w) forall u,v,w € X.

Then d is called a metric in X, and (X, d) is called a
metric space.
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Definition 2%: Let X be a non-empty set and let k >
1 be a given real number. Let g:X x X —» R* is a
real-valued function satisfying:

q1) q(v,w) = 0 ifand only if v =w;

qz) q(v,w) = q(w, v);

q3) q(v, w) < k[q(v,u) + q(u,w)] for all u,v,w €
X.

Then q is called a metric in X, and (X, q) is called b-
metric space.

Example 1'2: Let X =[0,1] then q(v,w) = (v —
w)? is a b-metric on R with k = 2.

Definition 3*3: Let {v,,} be a sequence in the metric
space (X, d).

1. A sequence {v,} is called convergent if there is
v € X such that d(v,,v) - 0 when n —» +oo, or
in other words for every € > 0 there is ny € N
such that n = n, implies that d(v,, v) < .

2. A sequence {v,} is called convergent if there is
v € Xsuchthat d(v,, v,,) = Owhenn,m - +oo,
or in other words for every € > 0 thereisny € N
such that n = n, implies that d(v,, v,) < €.

Definition 4%: Metric space (X,d) is said to be
complete if and only if each Cauchy sequence in X is
convergent in X.

Definition 3'*: Let {v,} be a sequence in b-metric
space (X, q).

1. A sequence {v,} is called convergent if there is
v € X such that q(v,,v) = 0 when n - +o0, or
in other words for every € > 0 there is ng € N
such that n > n, implies that q(v,,, v) < e.

2. A sequence {v,} is called convergent if there is
v € Xsuch that q(vp, viy) = 0 whenn, m — +oo,
or in other words for every € > 0 thereisny, € N
such that n > n, implies that q(v,,, vip) < €.

Definition 4': b-metric space (X,q) is said to be
complete if and only if each Cauchy sequence in X is
convergent in X.

Lemma 1%5: Let (X, q) be a complete b-metric space
with k > 1 and {v,} < X be a sequence in b-metric
space satisfying the following equation

q(Vn' Vn+1) < O‘q(vn—l: Vn)r
Forne Nand a < %then {vn} is a Cauchy sequence
in X.

Fixed Point Theorems of Kannan, Reich, and
Chatterjea in Metric Space

Theorem 12: Let (X,d) be a complete metric space,
T:X — X be a self-map. Suppose there exists y €
[0, %) such that

d(Tv, Tw) < y[d(v, Tv) + d(w, Tw)],

for all u,v € X with v+ w. Then T has a unique
fixed point in X.

Theorem 23: Let (X,d) be a complete metric space,
T:X — X be a self-map. Suppose there exists y €

[0, %) such that
d(Tv, Tw) < y[d(v, Tw) + d(w, Tv)],

for all u,v € X with v# w. Then T has a unique
fixed point in X.

Theorem 3*: Let (X, d) be a complete metric space,
T:X — X be a self-map. Suppose there exists non-
negative constants a, b, c satisfying a+b+c <1
such that

d(Tv,Tw) < ad(v,Tv) + Bd(w,Tw) + yd(v,w),

for all u,v € X with v = w. Then T has a unique
fixed point in X.

Fixed Point Theorems of Kannan, Reich, and
Chatterjea in Metric Space

Theorem 4°: Let (X, d) be a complete metric space,
T, T,: X — X be a pair of self-maps. Suppose there
existsy € (O, %) such that

d(Tyv, T,w) < yld(w, Tyv) + d(w, T,w)],
for all u,v € X with v +# w. Then T; and T, have a
unique common fixed point in X.

Theorem 5% Let (X, d) be a complete metric space,
Ty, T,: X — X be a pair of self-maps. Suppose there

existsy € (O, %) such that

d(Tyv, T,w) < y[d(v, T,w) + d(w, Tyv)],
for all u,v € X with v #= w. Then T, and T, have a
unique common fixed point in X.

Theorem 6°: Let (X, d) be a complete metric space,
Ty, T,: X — X be a pair of self-maps. Suppose there

existsy € (0, %) such that

d(Tyv, Tow) < yld(v, Tv) + d(w, Tw) + d(v,w)],
for all u,v € X with v = w. Then T; and T, have a
unique common fixed point in X.
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Results and Discussion

Theorem 7 uses a generalization of the Kannan
contraction function (if 8 = «a, then Eq 1 becomes
the Kannan contraction function).

Theorem 7: Let (X, q) be a complete b-metric space
with k > 1 beagivenreal numberandT;,T,: X - X
be a pair of self-maps, such that

Q(Tlv' TZW) < aq(v, Tlv) + ﬁQ(W, TZW)J

forallu,v e Xwhere0<a+p<1,ka+p<
land0<a, B < % Then T; and T, have a unique
common fixed point in X.

Proof. Since X is nonempty, let v, € X and define a
sequence {v,} in X inductively by putting v,,41 =
TV and vop iy = Tovyn 41 forn = 0,1,2,3, ... Will
be shown v,, # vy, 4. Suppose that v, = vy, 41 for
some n, € N. From Eq 1, obtained
q(Wng+1 Vng+2) = q(T1Vng ToVng+1)
< aq(vnO,Tlvno)
+ Bq(Vn 41, ToVng+1)
q(Vn, Vng+1)
+ ﬁQ(vn0+1'vn0+2)
- aCI(vn0+1:vn0+1) +
Bq(Vny+1) Vng+2)
= .BQ(Vn0+1'Vn0+2)-
a contradiction, since 0 < 8 < % < 1. Thus, it is

permissible to assume that v,, # v,,, forall n € N.
For n € N, the following cases are investigated.

Case 1: n is even. Here n=2i for some i€
{0,1,2,3 ... }. From Eq 1, obtained

= q(T1v2i-1,Tov2;)
< aq(vai—1, T1V2i-1)
+ Bq(v2i, T2v5)
QQ(UZi—l,r Uzt)
+gQ(U2i» V2i+1)

< 1-3 Iy q(V2i-1,V21)-

q(V2i, V2i+1)

2

Case 2: n is odd. Here n=2i+ 1 for some i €
{0,1,2,3 ... }. Using similar arguments as those given
in Case 1,

a
q(V2i41, V2i42) < -3 q(V20, Vai41)- 3
Combining Eq 2 and Eq 3 together, obtained
a
q(Vn, Vn41) < mqwn—pvn)-
So,
q(Vn, V1) < Aq(Vn—1, V),
with 1 = —,
1-B
q(Vn, Vnt1) < AMq(vg, v9).
4
Since +f < 1, so we have
ka+p < 1
ke < 1-p
ka 1
1-p
a 1
1- S %

there exist 0 < A < 1.

By using Lemma 1, thus {v,} is Cauchy in the
complete b-metric space (X, q). So there exists h €
X such that
q(v,, h) » 0asn - oo,
5

Now, shown that h is the common fixed point of T;
and T,. So, by using triangular inequality and (1),
obtained

q(h, T1h) < k[q(h,van42) + q(Vany2, T1R)]
= kq(h,vons2) + kq(Van42, T1h)
= kq(h,vons2) + kq(Tov2041, T1h)
< kq(h,vansr) + klaq(h, Tih) + Bq(V2n11, ToV2n41)]
= kq(h,vanso) + klaq(h, Tih) + Bq(V2ni1, Van+2)]
<

1—ka

[q(h, vans2) + Ba(Want1, Vans2)].
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Since0<a< % then 1 — ka > 0. Taking the limit

of Eq 4 and Eg 5 as n — oo, obtained

q(h,T,h) = 0.
So, h = 0. Hence h = T h. Similarly, it can easily be
proved that h = T,h. Therefore, h is the common
fixed point of T, and T5.

Now, the uniqueness of a common fixed point.
Suppose f € X is another common fixed point of T;
and T,, then T, f = T,f = f and q(f,h) > 0,
q(f,n)  _ aq(f,T:f)
= q(T1f, T2h) ~ +Bq(h,T:h)
= aq(f,f) +Ba(hh)
0

Which is a contradiction, since q(f,h) > 0, thus
f = h. Hence, the common fixed point of T; and T,
is unique.

Example 2: Let (X, q) be a complete b-metric space
with k = 2 and define g(v,w) = (v —w)?. Let X =
[0,1] c R and define

r 1
g,forve 0’5)
T1U= v :1 1 )
E,forve Bt ]

and

F 1
Z,forve O,—)

_ )4 ]
v = v [1 ’
-, forve —,1]

6 3

Then the condition q(T;v, Tzvi/) <aq(v,Tiv) +
Bq(w, T,w) is satisfied for all v,w € X if taking a =
B = %. Thus, by Theorem 7, T; and T, have a unique
common fixed point.

Theorem 8 uses a generalization of the Chatterjea
contraction function (if 8 = «, then Eq 6 becomes
the Chatterjea contraction function).

Theorem 8: Let (X, q) be a complete b-metric space
with k > 1 be a given real numberand 7}, T,: X = X
is a pair of self-maps, such that

q(T1v, Tow) < aq(, Tow) + Bq(w, Tyv),

forall u,v e X whereak(k+ 1) <landa+pf <
1 with a,8 < k—lz Then T, and T, have a unique
common fixed point in X.

Proof: Since X is nonempty, let v, € X and define a
sequence {v,} in X inductively by putting v,,,,1 =
T]_vzn and U2n+2 = T2U2n+1 fOI’ n = 0,1,2,3, Wi”

be shown v,, # vp,1. Suppose that v, = vy .4 for
some ny € N. From Eq 6, obtained
Q(Un0+1’vn0+2) = Q(T1UnO;T2VnO+1)
= QQ(UnO:Tzvn0+1)
+ Bq(Vny 41, T1vn,)
aq (UnO: Vno +2)
+ ﬁQ(UnOH: Vn(,+1)
= O‘Q(Uno+1:vn0+2):
a contradiction, since 0 < a < k—12 < 1. Thus, it is

permissible to assume that v,, # v, 4, foralln € N.
For n € N, the following cases are investigated.

Case 1. n is even. Here n = 2i for some i€
{0,1,2,3 ... }. From Eq 6, obtained

q(V2i, V2i41) q(T1v2i-1, T2v5;)

aq(vzi—1, ToV2;)

+ Bq(v2i, T1v2i-1)
aq(Vzi—1,V2i41)

+ Bq(vai, v2i)
aq(Vzi—1,V2i+1)
ak[q(vai-1,v2i)

+ q(v2i, V2i41),

ak
1—ak q(v2i-1,V21). 7

IA I

IA I

Case 2: n is odd. Here n = 2i+ 1 for some i €
{0,1,2,3 ... }. Using similar arguments as those given
in Case 1,
ak
A(V2i+1,Vaiv2) < 77 AWai V2ina). g

Combining Eq 7 and Eq 8 together, obtained

CI(Un, vn+1) < 1—ak Q(Un—l'vn)-
So,
CI(Un, vn+1) < ACI(vn—l' Un);
with 1 = -2
1-ak

q(Vn, Vnt1) < AMq(vg, v1),

Since (k +1) < 1, so we have
ak?+ak < 1

ak? < 1-—ak
2
ak < 1
1—ak
ak 1
< =
1—ak k

there exist 0 < A < 1.
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By using Lemma 1, thus {v,} is Cauchy in the
complete b-metric space (X, q). So there exists h €
X such that
q(vp, h) > 0asn — oo.
10

Now, shown that h is the common fixed point of T;
and T,. So, by using triangular inequality and Eq 6,
obtained

q(hTih) < k[q(h vani2) + q(W2n42, T1R)]

= kq(h,van42) + kq(Voni2, T1H)

kq(h, v2n42)
+ kq(Tyvan41, T1H)
kq(h, voni2)
+ klaq(h, T;v2n41)
+ Bq(vans1, T1H)]
= kq(hvani2)
+ klaq(h,vop2)
+ Bq(vans1, T1H)]
k[(1 + a)q(h,voni2)
+ Bk{q(v2ns1,h) + q(h, TR}

1=pk2 [(1 + a)q(h, v2n42)
+ Bkq(van41, )]

IA

IA

IA

Since 0 < § <— then 1— k2 > 0. Taking the
limit of Eq 10 as n — oo,

So, h = 0. Hence h = T, h. Similarly, it can easily be
proved that h = T, h. Using the same argument,

k
q(hToh) =T [(1+ B)q(h, vani1)
+ akq(vy,, h)] .

Since 0 < a < kiz then 1 — ak? > 0. Taking the

limit of Eq 10 as n — oo,
Therefore, h is the common fixed point of T; and T,.

Now, the uniqueness of a common fixed point.
Suppose f € X is another common fixed point of T;
and T,, then T, f = T,f = f,and q(f,h) > 0,

afh) _ aq(f.T;h)
=qf.T;h) S +Ba(hTif)
= aq(f,h) + Bq(h )
< (a+/qfh).

Which is a contradiction, since a + <1 and
q(f,h) > 0, thus f = h. Hence, the common fixed
point of T; and T, is unique.

The next theorem uses a generalization of the Reich
contraction function.

Theorem 9: Let (X, q) be a complete b-metric space
with k > 1 be a given real numberand T, T,: X — X
be a pair of self-maps, such that

q(Tlv' TZW) < aq(vr W) + ﬁCI(U’ Tlv)
+vq(w, Tow) 11
+ Qq(wl T1V),
for all w,v € X where a,B,y,0 >0, k(e + ) +
y<1landp + k6 <%,y <%With a+6 <1.Then

T, and T, have a unique common fixed point in X.

Proof: Since X is nonempty, let v, € X and define a
sequence {v,} in X inductively by putting v,,,41 =
Tivapand vy, o = Tovan e, forn = 0,1,2,3, ... Will
be shown v, # vy, 44. Suppose that v, = vy 44 for
some n, € N. From Eq 11, obtained
Q(vn0+1:vn0+2) Q(T1Vn0;T2Vn0+1)
< aq(Vny Vng+1)
+ ﬁQ(Vno;T1vn0)
+ V‘I(Uno+1: T2Un0+1)
+ 0q(v2i11, T1v2;)
- QQ(Unorvn0+1)
+ ﬁQ(vnofvno+1)
+ VQ(vno+1t Un0+2)
+ HQ(vn0+1rvn0+1)
- aCI(vn0+1rvno+1)
+ .BCI(Un0+1:UnO+1)
+ VCI(Un0+1: vn0+2)
+ HQ(vn0+1rvn0+1)
= VQ(vn0+1rvnO+2)-
a contradiction, since 0 <y < % < 1. Thus, it is

permissible to assume that v,, # v, 44 for all n € N.
For n € N, the following cases are investigated.

Case 1: n is even. Here n = 2i for some i€
{0,1,2,3...}. From Eq 11, obtained

q(V2i, V2i41) = q(T1v3i-1,Tovy;)

< aqWzi-1,V2i)

+ Bq(v2i-1,T1V2i-1)
+ vq(2i, Tov5;)
+ 0q (v, T1v2i-1)
(a + B)q(vai—1,v2;)
+vq(V2i, V2i41)
a+p

= 1 " q(V2i-1,V2:). 12
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Case 2: n is odd. Here n=2i+ 1 for some i €
{0,1,2,3 ... }. Using similar arguments as those given
in Case 1,
a+p
q(V2i+1, V2i42) < -y QW20 V2i1). 43

Combining Eq 12 and Eq 13 together, obtained

a+
Q(vn'vn+1) < —q(vn—lvvn)-

q(Vn, Vpy1) < A"q(wo, vy),

14
Since k(a + B) + y < 1, then we have
a+ 1
B < L
11—y k

there exist 0 < A < 1.

By using Lemma 1, thus {v,} is Cauchy in the
complete b-metric space (X, g). So there exists h €
X such that
q(v,,h) = 0asn — oo.
15

Now, shown that h is the common fixed point of T;
and T,. So, by using triangular inequality and Eq 11,

=17,
So,
q(Vn, Vny1) < Aq(Wp_q,vp),
with 2 = <2,
1y
q(h,Tih) < k[q(h, van42) + q(V2n42, T1H)]

= kq(h, vans2) + kq(Uan42, T1h)
= kq(h,v2ni2) + kq(Tov2041, T1H)
< kq(h,vani2) + klaq(h, vane1) + Bq(h, Tih) + ¥q(Van1, TaVont1)

+ 60q(van+1, T1h]

= kq(h, von42) + klaq(h, voni1) + Bq(h, Tih) + ¥q(Vans1, Vans2)
+ 0q(W2n41, T1H)]

< kq(h, vany2) + k[“‘l(h, Von+1) T BG(M T1h) + ¥q(Vant1, Vontz2)
+ Gk(q (Van+1, 1) + q(h, T1h))]

< Treprrey [ vans2) + aq(h vani) + ¥4 (Wans, Vansa)l

k

Since § + kf < - then 1 — k(8 + k8) > 0. Taking

the limit of Eq 14 and Eq 15 as n — oo,

So, h = 0. Hence h = T, h. Similarly, it can easily be
proved that h = T, h. Using the same argument,

q(h, Tzh) < 1—ky [q(h, vant1) + aq(van, h)
+ Bq(V2n, Vans1) + 0q(h, vans1)].

Since 0 <y < % then 1 — ky > 0. Taking the limit

of Eg 14 and Eq 15 asn — oo,
Therefore, h is the common fixed point of T; and T’.

Now, the uniqueness of a common fixed point.
Suppose f € X is another common fixed point of T;
and T, then T, f = T,f = f,and q(f,h) > 0,

aCI(f, h) + Bq(f' Tlf)
+vq(h, T;h)
+ 60q(h, T1f)
aq(f,h) + Bq(f, f)
= +yq(h,h)
+0q(h, f)
= (a+0)q(f,h),
Which is a contradiction, since 0 < a + 6 < 1 and

q(f,h),thus f = h.Hence, the common fixed point
of T; and T, is unique.

IA

q(T1f, Toh)

An Application

In this section, an application of the main results
related to Theorem 9 to dynamic programming is
presented, which is to find the common solution of
two functional equations.

Let Z be a decision space and Y be a state space. Let
assume a problem of dynamic programming
formulated in the form of functional equations as
follows:
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A1 (8)
= sup {L(t, ) 16

TEY

+b (t, r,Al(K(t, r)))},for teZ.
A, (1)
= sup {L(t, ) 17

TEY
+b (t,r,AZ(K(t,r)))},for tEeZ.
Let assume that D and P are Banach Spaces such that
ZCSDYCP, and K:ZXY > Z, L:ZXY >R,
b:Z x Y X R - R. Shown that the functional Eqs 16
and 17 have a unigue common solution.

Let X(Z) be the set of all bounded real-valued
mappings on Z. For all v € X(Z), define
vl = max|jv(w)].

Then (X(2), ||| is a Banach space.

Define a function q: X(Z) x X(Z) - R™ as follows:

q(v,w) = max(v(u) - ww)’,
u
then q is a complete b-metric space in X(2).

Let the following conditions hold:
L and b; are bounded for i = {1,2}.
For ueZ and v,weX(Z) define function
S1,52:X(Z) > X(Z) by
S;v(w) = sup{L(u,7) + by (u, 7, v(K(u,1))},
rey
S;w(w) = sup{L(u,7) + by (u, 7, w(K(u,7))}.
€Y
Well defined.
For (w,r)€EZxY,v,weX(Z)andx € Z,
|by (u, 7, v(x) — by (u, 1, w(x)|?
< aq(v,w) + Bq(v,S,v)
+rqw, S;w) + 0q(w, $;v),
for all g,h € X(Z) where k(a + ) +y <1 with
,8+k9,y<%anda+9<1.

Theorem 10: If conditions 1-3 hold, then Egs 16 and
17 have a unique common bounded solution.

Proof. Let v,w € X(Z) and u € Z. For any € > 0,
there exist g4, g, € Y such that

S1v(u) < L(u, g1)
+ by (u, 91'17(1((“-: 91))) 18
+ ¢
Sow(u) < L(u, g2)
+ b, (u, gz’W(K(u' gz))) 19
+¢
Sv(u) = L(w, g2)
+ by (u, gz,v(K(u, gz))) 20
Sow(u) = L(u, g1)
+ b, (u, 91.w(K(u, gl))) 21

Then, using Eq 18 and Eq 21,
Siv(w) <b (u, guv(Kw, 91))) te
—Sw) - b, (u, 91;W(K(u' 91)))
< |b1 (u, g1 V(K(u' 91)))
— b, (u, 91 w(K(w, g1)) | +¢
< (aq(v,w) + Bq(v,S1v)

1
+yq(w,S,w) + 6q(w, Slv))z 22
+¢

Similarly, by Eq 19 and Eq 20,
Sow(u) — Sv(w)
< (aq(v,w) + pq(v, $1v)
+vq(w, S;w) ) 23

+ 0q(w, 5117))E +¢

From Eq 22 and Eq 23,
1S1v(w) — Sw (W)
< (aq(v, w) + Bq(v,S1v)

1
+yq(w, S,w) + 0q(w, Slv))2 +¢g,
S0,

(Slv(u) — Szw(u))2
< aq(v,w) + Bq(v, $1v)
+yq(w,S,w) + 8g(w, S1v) + ¢.
Thus, for all € > 0,

(Slv(u) — Szw(u))2
< aq(v,w) + Bq(v, 5;v)
+vq(w, S;w) + 0q(w, $1v),
forall u € Z. Then
q($1v,$;w) < aq(v,w) + fq(v, $1v)
+yq(w,S,w) + 8q(w, S1v).
Therefore, based on Theorem 9, then the functional
Eqgs 16 and 17 has a unique common solution.
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Conclusion

In the b-metric space of the generalization of the
contraction function Kannan, Reich, and Chatterjea
obtain sufficient conditions for the occurrence of a
single fixed point. A single fixed point in the
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