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Abstract

The typical drug development approach is slow, costly, and fraught with failure - scientists examine
millions of compounds, but only a few make it to preclinical or clinical testing. Machine learning (ML),
a subset of Al, is a fast-expanding subject many pharmaceutical businesses increasingly utilize.
Incorporating machine learning technologies into the drug development process can aid in automating
repetitive data processing and analysis processes. ML techniques may be used at several stages of drug
development, including drug property prediction, drug-target interaction (DTI) prediction, and De Novo
drug design. DTIs are a critical component of the drug development process. When a drug (a chemical
molecule) attaches to a target (proteins or nucleic acids), it is said to bind; it alters its biological
behavior/function, returning it to normal. DTI prediction is an essential part of the Drug Discovery
process since it may speed up and decrease costs, but it is challenging and costly because experimental
assays take a long time and are expensive. In recent years, deep learning-based approaches have
demonstrated encouraging results in predicting DTI. This paper developed two deep-learning
architectures to predict drug-target interactions. The first model uses message-passing neural networks
(MPNN) for drug encoding and bidirectional gated recurrent units (Bi-GRU) for protein-encoding. The
second model uses Bi-GRU for drug encoding and protein encoding. The two models were trained and
evaluated on several benchmark datasets. Our results demonstrate that our models outperform state-of-
the-art DTI prediction methods and are a promising approach for predicting DTI with high accuracy.

Keywords: Bi-GRU, Deep Learning, Drug-target interactions, Drug Discovery, MPNN, Prediction
computational models.

Introduction

Drug discovery and development have been sped up
because of the advances in computational science.
Acrtificial intelligence (Al) is widely used in both
industry and academia. Machine learning (ML), an
essential component of Al, has been used in a variety
of contexts, including data production and analytics®.
Drug discovery is one area that stands to gain
significantly ~ from  this  machine learning
achievement. ML may be used to accelerate and

minimize the labor-intensive and costly process of
discovering  novel  medications 23,  Drug
development, bioinformatics, and cheminformatics
have benefited from introducing these computer-
assisted computational techniques. Bringing a new
medicine to market is complicated and time-
consuming, costing pharmaceutical companies an
average of $2.6 billion and 10 years of research and
development as shown in Fig.1* .
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DTlIs are an important stage in the drug discovery
process. Because it is difficult to identify potential
active chemicals in silico, leveraging large chemical
libraries can improve drug development efficiency
by removing the need to test all chemical compounds
against a given target protein °. However, identifying
drug-target interactions in Wet-lab (in vitro) research
is highly expensive, time-consuming, and complex .
Computational ~ (in  silico) techniques can
successfully enhance traditional in vitro activity
detection procedures, allowing the identification of
interacting drug-target combinations and speeding
up drug discovery. DTIs have been studied for
decades by researchers using clinical observations
and biological studies. Using these experimental
procedures, however, is still consumes time and
costly. They must also contend with a high rate of
attrition . As a result, in recent years, in drug
development and molecular  pharmacology,
computational approaches to predict drug-target
interactions have emerged as a hot research topic.

When a medicine (a chemical molecule) Connects a
protein or nucleic acid to a target, it modifies its
biological behavior/function, returning it to normal &,
DTI prediction is an important aspect of the DD
process since it can both expedite and save costs °.
However, it is challenging and expensive since
experimental assays take a long time and are pricey
10 As a result, researchers have increased their

efforts to identify the association between
medications and targets to speed up drug
development and shorten the time to market **. Based
on existing DT trials, computer-generated DTI
predictions can be used to efficiently evaluate the
interaction strength of new drug-target (DT)
combinations. Thus, when dealing with a vast
amount of complex information, The DD process is
hastened by systematically suggesting a new set of
candidate molecules (e.g., interactions (hydrophobic,
ionic, hydrogen bonding, and/or van der Waals
forces) between molecules) 1212,

The process of drug discovery is costly and time-
consuming, which can lead to increased healthcare
costs for patients. The identification of DTI is a
substantial part of the drug discovery process.
Therefore, there is a need to reduce the cost of
predicting DTI in order to accelerate drug discovery
and make it more affordable. Additionally,
personalized medicine can be developed with a
precisely learned molecule representation in a DTI
model, benefiting numerous patient cohorts.
Furthermore, predicting binding affinity values of
drug-target pairs remains a challenge, even with the
increasing availability of affinity data in DT
knowledge bases. These issues highlight the need for
advanced learning techniques such as machine and
deep learning architectures to improve the prediction
of DTI and binding affinities.
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This paper aims to develop a cost-effective and
accurate  model for predicting drug-target
interactions that can contribute to the development of
personalized medicine. also to improve the
efficiency and accuracy of predicting binding affinity
values. The paper was able to contribute to these
problems and achieve the goals by proposing two
different models for predicting drug-target
interactions.

The structure and content of the paper are organized
into several main sections, each serving a specific
purpose. the introduction section provides an
overview of the problem of drug-target interactions
and their significance in drug discovery. The
objectives and contributions of the paper are clearly
stated in the related work section, the paper reviews
existing literature and research on drug-target
interaction prediction using deep learning methods.
In the materials and methods section, the paper
describe the datasets used in the study, their sources,
and the preprocessing steps applied to ensure data
reliability. Also presents the deep learning models
designed specifically for drug-target interaction
prediction. The paper describe the architectural
design of each model and the rationale behind its
development. then the results and discussion section
presents the experimental outcomes obtained from
evaluating the proposed systems. Performance
comparisons against baseline methods and existing
state-of-the-art approaches are discussed. Finally the
conclusion section summarizes the key findings of
the study and emphasizes the novelty and
contributions of the proposed deep learning models.

Related Work

Numerous recent publications have been published
that use machine learning techniques to anticipate
drug-target interactions. This study focuses on the
most recent works on this topic that employ the
methodologies and applications discussed in the
previous section.

e  Abdul Raheem and Dhannoon ** In this study,
they discussed the steps of drug discovery and
methods of machine learning that can be applied
in each step, as well as given an overview of
each of the research works in this field. they also
presented a proposal to use machine learning
techniques to solve drug discovery problems.

e Ye Q, et al.’® The researchers addressed the
issue of various targets having vastly varied
guantities of interactions. In greater detail,

several positive samples are available for targets
with a high number of interactions (TWLNI).
However, for targets with a low interaction rate,
a limited number of interactions might result in
a relatively modest positive sample count. As a
result, researchers created two distinct
categorization algorithms for these two
categories of targets. Based on the aforesaid
concept, a novel approach for Multiple
Classification Methods (MCSDTI) used to
predict DTI is developed, which predicts
interaction utilizing distinct classification
strategies of TWSNI and TWLNI. Furthermore,
they examined TWSNI and TWLNI
individually, which allowed them to avoid the
problem that when all targets are reviewed
simultaneously, the conclusion might be
predominantly driven by targets with a
significant quantity of interactions. The
scientists analyzed five datasets: Nuclear
receptors (NR), G protein-coupled receptors
(GPCR), enzymes (E), ion channels (IC), and a
drug bank are all examples of proteins. These
databases are created by smiles. The results
show that their method's AUCs are 3.31%,
1.27%, 2.02%, 2.02%, and 1.04% higher than
the second best methods for TWLNI on the NR,
IC, GPCR, and E, and 1.00%, 3.20%, and 2.70%
higher than the second best approaches for
TWSNI on the NR, IC, and E.

De Souza et al.'® In This work, they proposes a
method for predicting the binding affinity
between drugs and targets using a similarity-
based approach with a 2D convolutional neural
network (CNN). The model is validated on
public datasets and demonstrates its
effectiveness in estimating drug-target binding
affinity.

Shim and Hong!” The authors develop a deep
learning model, HoTS, which predicts binding
areas and drug-target interactions using protein
sequence information. The model performs well
in predicting binding areas and outperforms
other models in drug-target interaction
prediction.

Lee and Nam 8 This paper presents MPS2IT-
DTI, a deep learning model for drug-target
interaction prediction. The model uses a
convolutional neural network and achieves
better performance than existing state-of-the-art
methodologies. It represents molecular and
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protein sequences as images, avoiding the need
for an embedding layer.

e Oztirk et al.*®. The study proposes a deep
learning-based approach for calculating binding
affinity in protein-ligand interactions. The
model uses 1D representations of targets and
pharmaceuticals and outperforms  other
methods, including a state-of-the-art approach,
by utilizing CNNs to create high-level
representations.

e Mukherjee et al.® was introduced a Deep
GLSTM as a graph convolutional network and
LSTM-based strategy for predicting binding
affinity between FDA-approved drugs and
SARS-CoV-2 viral proteins. The model is
trained on multiple datasets and generates a list
of top medicines with high binding affinity,
potentially useful for developing new
medications.

e  Shao et al.?* was presented as DTIGCCN as a
novel drug-target interaction prediction model.
It combines spectral-based graph convolutional
networks and convolutional neural networks to
extract refined features and exploit drug-target
correlations. Experimental results demonstrate
the superiority of this model over traditional
approaches.

e  Tsubaki and Tomii 2 The study focuses on end-
to-end representation learning for compounds
and proteins. It proposes a novel approach that
integrates a graph neural network for
compounds and a convolutional neural network
for proteins. The suggested strategy performs

Materials and Methods

The general proposed system diagram presented in
Fig. 2 provides a holistic view of the drug-target
interaction prediction pipeline, showecasing the
integration of deep learning models with input data
and the overall workflow. This system architecture
forms the basis for the subsequent detailed
explanation of the specific deep learning models and
their contributions to predicting drug-target
interactions.

competitively or better than previous
approaches, even on imbalanced datasets.
Ranjan et al.Z The researchers aim to create
highly active chemicals that bind to the protein
structure of SARS-CoV-2. They develop a
framework using a Gated Graph Neural
Network (GGNN), knowledge graphs, and early
fusion. The framework successfully generates
highly precise unique compounds, tested on
viral proteins RdRp and 3CLpro.

Wen et al.?* introduced a Deep DTls as a deep-
learning-based algorithmic framework for
identifying drug-drug interactions and target
interactions in drug repositioning. The model
utilizes unsupervised pretraining and achieves
competitive performance compared to other
state-of-the-art methods. Drug and target data
are obtained from the Drug Bank database.
Wen et al.?® presented a graph-convolutional
framework for predicting protein-ligand
interactions. The authors utilize unsupervised
graph auto-encoders and demonstrate that
Graph-CNNs can capture protein-ligand
binding interactions without relying on target-
ligand co-complexes. The model outperforms or
matches other ligand-scoring methods on
benchmark datasets.

Zhao et al. % proposed a DPP network to capture
the relationships between drug-protein pairs
(DPPs) in drug-target interaction modeling. The
proposed framework, GCN-DTI, utilizes graph
convolutional networks and deep neural
networks to predict DTls.

Input Data

ML Model Find interaction bevween drug

Classification
Drug-target interaction

(DTI) prediction

particular drug can bind to
particular profeins or not.

Figure 2. Methodology of the proposed system

Page | 3608


https://doi.org/10.21123/bsj.2024.9212

2024, 21(11): 3605-3616
https://doi.org/10.21123/bsj.2024.9212
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

S

Baghdad Science Journal

3.1 Davis dataset

The Davis dataset is a choice, for research on
predicting interactions between drugs and targets. It
includes an amount of data with over 72,000
measurements of binding affinity between 442 drug
compounds and 73 target proteins. Researchers often
use this dataset to test their models due to its size and
the variety of compounds and targets it covers %’

Moreover the Davis dataset is frequently employed
in deep learning approaches for predicting drug
target interactions. It has also been utilized to create
models that forecast the binding affinity between
drugs and targets a task that's more complex than
classification. In essence the Davis dataset serves as
a tool for scientists investigating drug target
interactions and binding affinity prediction playing a
role in advancing various successful deep learning
models, in this field.

3.2 Dataset Preprocessing
3.2.1 SMILES and Protein Sequences Encoding

In SMILES, the labels or unique letters represent
atoms, bonds, and other molecular features. The
specific set of labels used in SMILES can vary
depending on the context and the molecules being
represented. While in protein, there are a total of 20
standard amino acids that are commonly found in
proteins. Each amino acid is represented by a unique
letter or symbol. However, if there are additional
categories, such as ambiguous or non-standard
amino acids, post-translational maodifications, or
special symbols used to denote specific features, the
number of categories may exceed 25.

These 20 amino acids form the basis of protein
sequences, and each amino acid contributes to the
structure and function of proteins in different ways.
It's important to note that if you are considering a
specific set of protein sequences or a specific domain
of proteins, additional non-standard amino acids or
symbols may represent unique features within those
sequences.

Steps to SMILES and protein sequences encoding as
following:

e Tokenize each SMILES or amino acid as a
symbol

o Builds the vocabulary and assigns a unique index
to each symbol.

o Replaces each symbol with its corresponding
index in the vocabulary.

# create token dictionaries for amino acids and
SMILES

amino_acid_dict = {

'‘A0,'C:1,'D"2,'E" 3,'F:4,'G"5 'H:6,'I""7,
‘K" 8, 'L" 9, 'M" 10, 'N" 11, 'P" 12, 'Q" 13, 'R"
14,'S" 15, 'T" 16, 'V 17, 'W" 18, 'Y": 19}

smiles_dict = {#:0,'(: 1,2, '+ 3,'-2 4, 5, /"
6,'1:7,'2 8,'3: 9, '4" 10, '5 11, '6" 12, '7" 13,
'8 14,'9" 15, '=" 16, ‘B 17, 'C"; 18, 'F: 19, 'H"
20, 'I 21, 'K": 22, 'N'; 23, '0"; 24, ‘P 25, 'S" 26,
T 27,"\: 28, 7" 29, ¢ 30, 'n": 31, '0": 32, 's" 33}

3.2.2 Convert SMILES to Graph

This manner converts SMILES (Simplified
Molecular Input Line Entry System) representations
of molecules into graph structures to perform graph-
based deep learning. The general procedure used in
the manner to convert SMILES to graphs:

1. Parsing SMILES: The example uses the RDKit
library, a powerful cheminformatics toolkit, to
parse the SMILES representations and obtain a
molecule object. RDKit provides functions to
analyze and manipulate molecular structures.

2. Atom Mapping: After obtaining the molecule
object from SMILES, the example maps each
atom to a unique index. It creates a dictionary
where each atom is a key, and the corresponding
value is an integer index.

3. Atom Attributes; The provided information
outlines characteristics related to atoms, within
the molecule. These attributes encompass
details such as the number, hybridization status,
hydrogen count and other relevant properties.
Incorporating these attributes enables the
inclusion of details, within the graphical
depiction.

4. Bond Mapping: Each bond connecting atoms is
assigned an index, for reference. Similar to atom
assignment a dictionary is established where
each bond serves as a key linked to an identifier.

5. Bond Features: Additionally the process
involves extracting attributes for every bond
within the molecule. These features may
encompass details such as the type of bond
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(triple) ring status, stereochemistry and other
relevant information. By encapsulating these
characteristics the connectivity and properties
of the chemical bonds are encoded.

6. Graph Construction: Utilizing the assigned
atom and bond indices a visual representation of
the molecule in graph form is generated. Nodes
are created to represent atoms while edges
denote the bonds between them incorporating
features accordingly. The resulting graph
visually depicts the arrangement with atoms
represented as nodes and bonds as edge.

7. Graph Neural Network (GNN) Input: The
constructed graph structure serves as input for
the MPNN based model implementation.
MPNNSs harness the graph topology. Employ
message propagation techniques to disseminate
information throughout the nodes and edges of
the graph structure. This mechanism enables the
model to capture relationships and interactions,
within the structure involving atoms and bonds.

In general, the procedure includes analyzing
SMILES assigning indices, to atoms and bonds
extracting characteristics for atoms and bonds
creating a depiction and applying the graph for
learning using MPNN. This enables learning based
on graphs, for molecular information.

The Proposed Systems
Model 1: BiGRU-DTA

The BiGRU DTA model is a network design created
to predict the relationship, between drug compounds
and target proteins. It utilizes a gated recurrent unit
(Bi GRU) to extract features from both protein and
drug sequences, followed by a connected neural
network for the final forecast as shown in Fig. 3.

The Bi GRU network, a type of network (RNN)
effectively captures sequential patterns in input
sequences by analyzing data in both forward and
backward directions. It consists of two layers of

GRU units with one processing the input sequence in
a manner and the other in reverse. The results from
these layers are. Passed on to the next layer.

In this model separate Bi GRU networks handle the
drug and protein sequences independently extracting
features from them in both directions. The outputs
from these networks are. Fed into the connected
neural network for accurate prediction of binding
affinity.

This approach offers benefits compared to methods.
Firstly the Bi GRU network is adept at capturing long
distance relationships within input sequences,
which's crucial for predicting binding affinities.
Additionally it is adaptable to varying sequence
lengths making it beneficial for datasets, with
sequence sizes.

Finally the Bi GRU network has parameters
compared to CNNs, which helps reduce the risk of
overfitting especially when working with datasets. In
general this alternative approach using Bi GRU
networks shows promising results in forecasting the
binding affinity, between drug compounds and target
proteins emerging as a substitute for the CNN based
method. The parameter settings of the model for
predicting interactions between drugs and targets are
described in Table 1. These parameters play a role,
in determining the models efficiency and accuracy.
The table below presents the ranges and specific
values assigned to each parameter during the
experimentation phase:

Table 1. Parameter Settings for Model-1
Parameters Range
Number of filters 32*1; 32*2; 32*3

Epoch 100

Hidden neurons 1024; 1024; 512
Batch size 256

Dropout 0.1

Optimizer Adam

Learning rate (Ir) 0.001
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input_3 input: | [(None, 85)]
InputLayer
floataz2 output: | [(None, 85)]
embedding 2 input: (INone, 85)
Embedding
floataa output: | (None, 85, 128)

l

input_< input: [(None, 1200)]
InputLayer
float32 output: | [(None, 1200)]
embedding 3 input: (None, 1200)
Embedding
float32 output: (None, 1200, 128)

l

bidirectional 6(gru_6) | jpput: | (Nene, 85, 128)

bidirectional 9(gru_9) | jnput: | (None, 1200, 128)

Bidirectional(GRU) Bidirectional(GRU)
float32 output: | (None, 85, 64) float32 output: | (None, 1200, 64)
bidirectional 7(gru_7) input: (None, 85, 64) bidirectional_10(gru_10}) input: (None, 1200, 64)
Bidirectional(GRU) Bidirectional(GRU)
float32 output: | (None, 85, 128) float32 output: | (None, 1200, 128)

}

}

bidirectional 8(gru_8) input: (None, 85, 128)
Bidirectional(GRU)
float32 output: | (None, 85, 192)

bidirectional 11(gru_11) input: (None, 1200, 128)
Bidirectional(GRU)
float32 output: (None, 1200, 192)

3

}

global_max_poolingld 2 | jp: (None, 85, 192)

GlobalMaxPooling 1D
float32 output. (None, 192)

global_max_poolingld_3 input: (None, 1200, 192)
GlobalMaxPoolinglD
float32 output: (None, 192)

/

concatenate_ 1 input:

[(None, 192), (None, 192)]

Concatenate
float32 output:

(None, 384)

I

dense_6

input: (None, 384)

Dense

floaraz | output: [ (None, 512)

I

dense_7

Dense

input: (None, 512)

float32 output: (INone, 1)

Figure 3. Model-1 with two Bi-GRU blocks to learn from compound SMILES and protein sequences.

Model2: MPNN-GRU-DTA

The model includes two network components; one,
for dealing with drug data called a message passing
neural network (MPNN) and another for handling
protein data known as a bidirectional gated recurrent
unit (Bi GRU) as shown in Figure 4. This approach
effectively captures the characteristics and trends to
each type of information.

The MPNN part is designed to process details about
drugs in a graph format representing the structure of
each drug. By using the MPNN design the model
can. Encode structural aspects of drug molecules
capturing key features that influence how they
interact with target proteins. On the hand the Bi GRU
component focuses on working with sequences of
protein data. This type of network effectively
identifies patterns within protein sequences by
examining them in both forward and backward
directions.

After analyzing drug and protein data the model
combines the results from both the MPNN and Bi
GRU networks. This merging allows the model to
leverage a combination of information from both the
properties of drugs and the sequential patterns found
in proteins. The combined output then goes through
layers, including connected layers to produce the
final prediction for interactions, between drugs and
target proteins.

These layers are designed to understand patterns and
representations, from the combined features
ultimately making predictions about how a particular
drug interacts with its target protein. In general this
model structure, which uses MPNN for drugs and Bi
GRU for proteins while combining their results
presents a method, for foreseeing Drug Target
interactions. By capturing both the sequential
elements of the information the model leverages the
advantages of these two types of data to improve
prediction accuracy in the challenging task of
predicting DTI.
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input_1 input: | [(None, 1200)]

InputLayer
floataz | output: | [(Nene, 1200)]

I

embedding input: (None, 1200)
Embedding
float32 output: | (None, 1200, 128)

}

input: | (None, 1200, 128)

bidirectional(gni)

Bidirectional(GRU)
floataz2 ouipui: (None, 1200, 64)

l

bidirectional _1(gru_1) input: (None, 1200, 64) atom_features input: | [(None, 29)] bond_features input: | [(None, 7)] pair_indices input: | [(None, 2)]
Bidirectional(GR1T) TnputLayer TnputLayer InputLayer
floar3z output: | (None, 1200, 128) Toar22 output: | [(None, 29)] Moat3z output: | [(None, 7)] in3z output: | [(None, 2)]
bidirectional_2(gru_2) input: | (None, 1200, 128) message_passing input: | [(Nene, 29), (None, 7), (None, 2)] molecule_indicator input: | [(None,)]
Bidirectional{( GRU) M Passing InputLayer
float32 output: | (None, 1200, 192) float32 output: (None, 96) nt32 output: | [(None,)]
global_max_pooling1d input: | (None, 1200, 192) transformer_encoder_readout input: | [(None, 96), (None,)]
GlobalMaxPooling1D TranstormerbncoderReadout
float3? output: (None, 192) floar32 ourput: (None, 96)

/

concatenale

input: | [(None, 96), (None, 192)]

Concatenate
float32 output: (None, 288)

|

input: (None, 288)

dense_4
Dense
floars2 | output: | (None, 512)

l

input: | (None, 512)

dense_5
Dense
floar32 outpur: (None, 1)

Figure 4. Model-2 with Bi-GRU to learn from protein sequences and MPNN for compound Graph.

Results and Discussion

This paper introduced two deep-learning models.
The first model employs two BI-GRU blocks to
acquire representations for drugs and targets by
considering their sequences. The performance of
these models was evaluated by different training sets
for the Davis dataset, and the results are presented in
Table 2 and Fig. 5, showing the average MSE scores
over the independent test set for all six models
trained with identical parameters.

The second model employed two distinct neural
network components: MPNN for processing drugs
and Bi-GRU for processing proteins. This approach
effectively captures the unique characteristics and
patterns associated with each data type. Tables 3 and
Fig. 6 report the average MSE scores over the
independent test set of the seven models trained with
the same parameters using the seven different
training sets for the Davis dataset.

Table 2. The average MSE scores of the test set
for model-1

Proteins Compounds MSE

KronRLS S-W Pubchem 0.379
Sim

SimBoost S-W Pubchem 0.282
Sim

DeepDTA  S-W Pubchem 0.608
Sim

DeepDTA  CNN Pubchem 0.419
Sim

DeepDTA S-W CNN 0.420

DeepDTA CNN CNN 0.261

The Bi-Gru Bi-Gru 0.229

Proposed

Method
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Figure 5. Training and validation MSE for model-
1

Table 3. The average MSE scores of the test set
for model-2

Model MSE
GANsDTA[24] 0.276
DeepGS 0.252
GraphDTA (GCN) 0.254
GraphDTA (GATGCN) 0.245
GraphDTA (GAT) 0.232
GraphDTA (GIN) 0.229
DeepGLSTM 0.232

The Proposed Method 0.202

Conclusion

In conclusion, this study introduces two deep-
learning models to enhance the prediction accuracy
of drug-target interactions. The first model utilizes
two BI-GRU Dblocks to effectively learn
representations for drugs and targets based on their
sequential characteristics. Through evaluation of the
independent test set of the Davis dataset, the
performance analysis, as shown in Table 2 and Fig.
5, demonstrates that our proposed model achieves a
superior average mean squared error (MSE) score of
0.2295. This indicates its efficacy in predicting drug-
target interactions compared to alternative models,
such as KronRLS, SimBoost, and DeepDTA, which
exhibit comparatively higher MSE scores.

Training and validation MSE

0.8 4 —— Training MSE
— Validation MSE

0.7 1
0.6

0.5 4

MSE

0.4 1

0.3 1

0.2 1

0.1 4

ll) 2|0 4‘0 6|0 8|0 llI)O
Epochs
Figure 6. Training and validation MSE for model-
2

The selection of the dataset used in each study plays
acrucial role in determining the model's performance
28 The availability of additional diverse and larger
datasets could further enhance the generalizability
and robustness of our models also Future studies
should assess the transferability and generalization
capabilities of our models to new data points. Drug-
target interactions are influenced by a myriad of
biological factors, including protein structure, ligand
binding sites, and cellular environments.

Finally Our study focused on the computational
prediction of drug-target interactions; however,
experimental validation is critical before applying
any predicted interactions in a clinical setting. The
absence of direct experimental validation is a
limitation, and future research should consider
experimental verification to confirm the predicted
interactions' accuracy.

Moreover, the second model in this study
incorporates  two  distinct neural  network
components, specifically MPNN for drug processing
and Bi-GRU for protein processing. Our model
successfully captures important features by
leveraging the unique characteristics and patterns
associated with each data type, leading to improved
predictive capabilities. The data shown in Table 3
and Figure 6 emphasize the MSE scores, on the test
set of the Davis dataset for seven different models.
Our new approach achieves a MSE score of 0.2846
showing its effectiveness in predicting drug target
interactions when compared to advanced models like
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GANsSDTA, DeepGS and various GraphDTA
designs.

Overall the results of this research highlight the
importance of using learning models to enhance our
knowledge and forecasting of drug target
interactions. Our proposed models, featuring Bl
GRU and MPNN Bi GRU architectures demonstrate
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