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Abstract

In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the
study of generalizations of separation axioms. One of the important axioms of separation is what is called
regularity, and the spaces that have this property are not few, and the most important of these spaces are
Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework,
which necessitates the use of generalized open sets to obtain more good characteristics and preserve the
properties achieved in general topology. Perhaps the reader will realize through the research that our
generalization preserved most of the characteristics, the most important of which is the hereditary property.
Two types of regular spaces have been presented, namely the topological space Rp and the topological
space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect
of functions on them, have been studied. In addition several theorems have been proved regarding the
sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above
concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced
with examples.

Keywords: Pre-open set, Pre- closed set, Pre- open- function, Pre- continuous- function, Pre-irresolute

map, Regular space.

Introduction

Throughout this paper Z means a topological space
(Z,r) without separation axioms, unless it is
explicitly referenced. The nature of this work is to
explore and extract a specific new genre, the
generalized separation axioms have been constructed
by several authors'. A pre-open was studied in 1982
by Mashhour, Abd El — Monsef and EI- Deeb®, a
subset M is a pre-open set if M < int(CI(M)), where
the CI(M) and the int(M) are the closure and the
interior operators of a set M respectively®. (Z — M)
is labeled a pre-closed, where M is a pre-open. If M
is a subset of a space Z, then the pre-closure of M
means the intersection of all pre-closed sets in Z that

contain M which is denoted by Cl,(M) for
instance’®.

In this paper, our goal is to generalize the concept of
regularity of spaces by using the pre-open sets®°.
Many results were proven and illustrated by
examples. Further many properties of such spaces
have been investigated. The assortment of pre-open
(resp. pre-closed) of Z will be denoted by P.O(2)
(resp. P.C(2)) and say that a set H in a space Z is pre-
closed neighborhood *** of a point ¢ if H is pre-
closed and contains a pre-open set to which c
belongs. For each pair of topological spaces Z and Y
a function f: Z—Y is called pre-irresolute**®® if =1
(H)eP.O(2) for each HEP.O(Y) and f is termed M-
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pre-closed (resp. M-pre-open) if f(K)eP.C(Y) (resp.
f(K)eP.O(Y)) for all KeP.C(2) (resp.
KeP.O(2))1%Y,

The pre - regular spaces

In the beginning of this section, a definition of pre-
regular spaces is provided by:

Definition 1: A space Z is called pre-regular space
and shortly R,,- space if for each ¢ € Z and for every
closed set W in Z such that c & W, there exist
G,H€P.0(Z),suchthatce GandW € Hand G n
H=0.

Note: It is easy to see that every regular space is pre-
regular. The following example shows that the
convers in general is not true.

Examplel: LetZ = {cq, ¢y, C3}, T=
{Z,0,{cy,c,}} ThenPO(Z) = {Z,0,

{c1}, {ca} {c1, 2}, {cq, 3}, {cy, c3)}. 1t is clear that
(Z,7) is R,- space while it is not regular. The
following theorem gives a characterization of a space
to be R,,- space.

Theorem 1: A space Z is R,,- space <> for every c €
Z and for every open subset G, there is a pre-open
subset L,whereas c € L € Cl,,(L) € G.

Proof: Necessity; Since ¢ € G€ and G°€ is closed, so
by pre-regularity of Z there are two disjoint L, W €
P.0O(Z) where ce L and G° <€ W, but W€ is pre-
closed and L € W€, this mean that CL,,(W*°) = W€
and since Cl,(L) < CL,(W*®), hence L € Cl,(L) <
W€ c G, therefore c € L < Cl,(L) € G.

Sufficient; Let E be aclosed and c € E, so c € E€ and
E€ is open implies that there exist pre-open set K
whereas CEKCClL,(K)SE® Now EC
(CL,(K))¢, and since CL,(K) is pre-closed and K N
(CL,(K)) = @, therefore c € K and E € (Cl,,(K))¢
implies Z is Ry,- space.

Corollary 1: A space Z is R,- space if for every c €
Z and for every pre-open subset H includes c there
exists a pre-open subset W containing c and
ClL,(W)CS H.

Proof: Obvious since every closed set is pre-closed
set’s,

Theorem 2: A space Z is Rp—space < For each ¢
€Z, the set of pre-closed contained in each
neighbourhood of ¢ form a base for that
neighbourhood.

Proof: Necessity; Give c € Z and neighborhood O of
c, o there is an open subset L. € Z whereas c € L ©
O implies c ¢ Z— L and (Z — L) is closed, thus by
the pre regularity there are G, H € P.0(Z) such that
CEG,(Z—L)YSHandHNG=@.Thus ceG <
Z—-HcLc0O, so Z-—H is pre-closed
neighborhood of ¢ contain in the given
neighborhood 0.

Sufficient; Let ¢ € Z and the closed set E S Z — {c}.
Since Z — E is open and contained c , there is a pre-
closed neighborhood O of ¢ suchthat 0 € Z —E.
Now let H =Z — 0O , then H is pre-open and € H .
But 0 is neighborhood of c, so there is an open set
G suchthat ceGSO .ThusHNG<SON(Z—-
0) = ¢ and since G is pre-open'® implies Z is R,-
space.

Proposition 1: If a space Z is Rp—space then for
every ceZ and every open set H containing c, there
exists a NEP.O(Z), whereas ceN and Cl(int(N))<SH.
Proof: Since c ¢ H® and H€ is closed, so there exist
disjoint pre-open sets G, and G, such that c € G,
and H® € G,. Now G; € (G,)¢ S H also (G,)° is
pre-closed, hence Cl(int(G,)) € Cl(int((G,))) <
(G,)€ € H . thus G, is the required pre-open set.

The following theorem shows that the pre regularity
is hereditary property.

Theorem 3: Let (Y, Ty) be a clopen subspace of R,,-
space (Z,tz), then (Y, ty) is pre-R- subspace of
(Z, Tz).

Proof: Let c € Yand K be a closed set in Y such that
c & K.Since KisclosedinY, so thereis a closed set
EinZsuchthat K =EN Y Nowc ¢ Eand(Z, 1)
Is R,,- space implies there exist G, H € P.O(Z) such
that ce HLESC Gand HN G = @. Y isopen, soitis
pre-open'® and G is pre-open, thus YNG <
int;, (Cl;,(Y)) Nint,, (Cl,(G)) =
int,,[(Cl;,(Y)) N (Cl,(G)] = int;, [YN
(Cl,(G)] € int, [Y N (Cl,(G)]*°. Now it is
sufficient to show that Y n (Cl;,(G)) = Cl (YN
G), clear that Cl, (YNG) €YnN(Cl,(G)). To
show YN (Cl;,(G)) € Cl, ,(YNG), let teEYN
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(Cl,,(G)), if t & Cl, (YN G), then there is an open
neighborhood O of t in Y whereas 0N (YNG) =
@. But Y is open, hence O is open in Z ® which
contains t and 0 N G = @ which is imposible since
t€ Cl;,(G). Thus YN G is pre-open containing
K.Similarly Y n H is pre-open which contain t, and
since (YNG)N(YNH)=YNn(HNG) =@ which
complete the proof.

Definition 2: A space Z is called pre - Hausdorff
space <« forany elements ¢; # c, in Z, there are pre-
open sets H and G satisfy ¢; € G, ¢, € Hand H N
G=0.

The following example shows that the quotient
topology of R,,- space is pre-Hausdorff.

Example 2: Let Z be a R,- space and N be any
clopen subset of Z. Define a relation R on Z as
follows: cRv @ c,ve Norc,v & N. It can be seen
that R is an equivalence relation on Z. To prove Z/R
with the quotient topology is pre-Hausdorff space
take [c], [v] € Z/R such that [c]#[v] hence either c or
v belong to N. Now by the pre regularity of Z there
are two pre-open subsets K; and K, in Z whereas
[c] € N € K; and [v] € K, implies that the quotient
space is pre-Hausdorff.

Theorem 4: Let f: Z — Ybe a closed, pre-
irresolute, injective functionand Y is R,,- space, then
Z is R,- space.

Proof: let c € Z and L be any closed subset of Z
such that c & L, then f (L) is closed subset of Y
whereas f (c) & f (L) and since Y is R,,- space, so
there are two disjoint pre-open subsets H, W
whereas f (L) S Hand f (c) € W.Clearthat L <
fHf (L) S fH(H)and cef H(W)also f* (H) N
fY (W) = @ see?! and since f is pre-irresolute, hence
fY(H), f~1 (W) are pre-open subsets of Z, which
complete the proof.

Theorem 5: Let f: Z— Y be a bijective, M-pre-
open, continuous function and Z is R,,- space, then Y
IS Rp- space.

Proof: Let L be a closed set in Y and v & L, then
fYL) € Zand f(v) & fY(L). Since f is continuous
then f71(L) is closed in Z and by the pre-regularity of
Z there are N;,N, € P.O(Z) whereas N; N N, =

¢ such that f(L) € N; and f*(v) € N,. Now f is
M-pre-open, hence f (N;) and f (N,) are disjoin pre-
open subsets in Y include L and v respectively.

Strongly pre- regular spaces

In the beginning of this section a definition of
strongly-pre-regular spaces is presented.

Definition 3: A space Z is termed strongly pre-
regular space and shortly S-R,,- space if for each c €
Z and for every pre-closed set K in Z such that c ¢
K, there are two disjoint open sets G and H where c €
GandKCS H.

It is easy to see that every S-R,,- space is R,,- space

but the convers is not necessarily true, as shown
below

Example 3: Take Z={cy,cy 3}, T =
{Z,0,{c1,c2}}, then P.0(Z) =
{Z,0,{c1},{c2}, {c1, ¢z}, {c1, ez}, {ca, 33} and
P.C(Z) ={Z,®,{c1},{cz}, {c3}, {c1, c3}, {c2,c3}}

Clear that (Z, T) is Ry,- space but not S-R,,- space.

The following two theorems gives characterizations
for S-R,,- spaces.

Theorem 6: A space Z is S-R,,- space <> for every
c € Z and for every pre-open set G includes c, there
exist an open set N whereas c € N < CI(N) € G.

Proof: Necessity; Since ¢ € G¢ and G€ is pre-closed,
so by the S-R,,- regularity of Z there are two disjoint
open subsets N and H where c € N and G° C H.
Now H€ is closed and N < H€, this mean that
CI(H®) = H° and CI(N) € CI(H®), hence N <
CI(N) € H® c G, thereforec e N € CI(N) € G.
Sufficiency; Let L be a pre-closed and c ¢ L, so c €
L€ and L€ is pre-open implies that there exist open set
N  whereas ce N € CI(N) € L® implies L
(CL(N))C. But CI(N) is closed and N n (CI(N))€ =
@, therefore ce N and L < (CI(N))¢, hence Z is
S-R,- space.

The following theorem gives us an advantage of
strongly pre-regular spaces.

Theorem 7: If Z isa S-R,,- space, then for every
c € Z and for every pre-open set K includes c, there
exists closed set L whereas CL,(int(L)) € K.
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Proof: Consider K is a pre-open and c € K, then c ¢
K° and K€ is pre-closed. Since Z is S-R,,- space, S0
there are disjoint open sets L, and L, suchthat c €
L, and K <L, implies L; € (L,)°<S K. But
int((Ly)¢) € (Ly)¢ [20]. Further (Lp)¢ is pre-
closed, hence Cl, (int((L2)°)) € (L) € K.
Theorem 8: Let f: Z — W be a continuous, M-pre-
closed, injective function and W is S-R,,- space, then
Zis S-R,- space.

Proof: let c €Z and H € P.C(Z) whereas ¢ € H,
then f (H) is pre-closed subset of Wwhereas f(c) ¢
f(H) and since W is S-R,,- space, so there are two
disjoint open sets K, L. whereas f(H) & K and f (c)
€ L. Now H € f~1(f (H)) € f~Y(K) and ce€
fFYL)* also f~YK) N f7YL) = @. But f is
continuous, thus £ ~1(K), f ~! (L) are open subsets of
Z, which complete the proof.

Conclusion

The separation axioms are considered one of the
most important topics in topology, and in particular
in general topology, because of their role in
classifying topological spaces. The research focused
on two types of topological spaces, namely, Rp-
regular and S-Rp-regular as a generalization of the
regular spaces within the generalizations of the
separation axioms. Many results have been presented
about the characteristics of these types of spaces and
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