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Abstract

The fractional differential equation provides a powerful mathematical framework for modeling and
understanding a wide range of complex, non-local and memory-dependent phenomena in various
scientific, engineering and real-world applications. Liver metastasis is a secondary cancerous tumor that
develops in the liver due to the spread of cancer cells from a primary cancer originating in another part
of the human body. The primary focus of this study is to understand tumor growth in the human liver,
both in the presence and absence of medication therapy. To achieve this, a temporal fractional-order
parabolic partial differential equation is utilized, and its analysis is carried out using numerical methods.
The Caputo derivative is employed to explore the impact of medication therapy on tumor growth. To
numerically solve the mathematical model, the Crank-Nicolson finite difference method has been
developed. This method is selected for its remarkable attributes, including unconditional stability and
second-order accuracy in both spatial and temporal dimensions. The outcomes and insights derived from
this study are effectively communicated through various graphical representations. These visual aids
serve as invaluable tools for comprehending the profound impact of medication therapy on the growth
of liver tumors. Through the medium of these graphical depictions, one can glean a clearer and more
intuitive understanding of the complex dynamics at play. The numeric solution to this intricate problem
is achieved through the implementation of algorithms meticulously crafted using versatile and powerful
Python programming language. Python’s flexibility, extensive libraries, and robust numerical
computing capabilities make it a good choice for handling the complexities of this study.

Keywords: Caputo Derivative, Finite Difference Scheme, Fractional Differential Equation, Python,
Tumor cell.

Introduction

Liver metastases are cancerous tumors that spread substances from the blood, generating bile, and
from other parts of the body to the liver. The liver  storing energy®. When cancer cells invade the liver,
performs several activities, including filtering toxic it can significantly impair its function, and lead to
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serious health complications. The liver is a common
site of metastasis because it receives a significant
amount of blood flow from the rest of the body. The
cancer cells can travel through the bloodstream and
settle in the liver?2. Breast cancer, lung cancer,
colorectal cancer and pancreatic cancer are common
names of cancers that spread to liver. The diagnosis
of liver metastases is usually made through magnetic
resonance imaging (MRI) scans or computed
tomography (CT) scans®3. These tests can show the
presence of tumors in the liver and help doctors
determine the extent of the disease. The type of
cancer, the size and number of tumors in the liver,
and the overall health of the patient are important
factors in the treatment of liver metastases. One of
the primary challenges in modeling liver metastases
is capturing the temporal dynamics of tumor growth.
Many investigators have developed mathematical
models to analyze the growth of tumor cells. In 2003,
Swanson et al.® studied virtual and real brain tumor
for growth and invasion of gliomas. In 2014, Nenad
Filipovic et al.* have used classical reaction diffusion
equation to model liver metastasis disease and
compare it to experimental data on liver metastasis
disease that were collected by using medication
therapy for a specific patient. In the model developed
by Filipovic et al., the behaviour of normal cells
against the tumor cells is not consider. In 2017,
Khanday and Nazir?> conducted a study on the bio-
heat model to investigate the thermal distribution in
cancerous tissue, providing valuable insights into the
understanding of heat transfer in tumors. In 2020,
Sagib Mubarak et al.! modified the model of
Filipovic et al. by including the relationship between
tumor cells and normal cells. They also considered
the medication term to be both time and space
dependent.

The literature survey suggests that, numerous models
have been developed to study the growth of tumor
cells in liver metastases diseases. It is observed that,
most of the models are developed by using ordinary
and partial derivatives, which means that they are
free from the memory effect. In the last two decades,
fractional differential equations (FDEs) have been
widely used in the modeling of real life problems®®.
In 2014, both Larisse Bolton et al.}® and Olaniyi
Samuel lyiola and F. D. Zaman!! conducted
significant studies related to fractional order tumor
modelling. Bolton et al.® utilized a fractional
Gompertz model to fit experimental data on tumor
growth and they discovered that a fractional order

model yeilds superior results compared to an
ordinary model. On the other hand, Olaniyi Samuel
lyiola and F. D. Zaman'! focused on a fractional
order tumor cell concentration model and obtained
the series solution using the g-Homotopy Analysis
Method. In 2020, Rihan and Velmurugan®? employed
a delay differential equation of fractional order to
investigate the tumor immune system with drug
therapy. They successfully obtained a numerical
solution of the model by employing Adams—
Bashforth—Moulton  predictor-corrector  scheme.
Recently, Abaid Ur Rehman M et al.®® studied a
fractional order model of tumor cell in the Caputo
sense, describing the rate of killing tumor cells. They
obtained the computational solution using the
reduced defferential transform method. It is observed
that fractional-order modelling in biological systems
yields more favorable results compare to integer-
order modelling. The latter ignores the memory
effects or aftereffects manifesting in these systems®®,
This advantage arises due to the power-law kernal of
the Caputo derivative, where the memory effect
becomes more pronounced at small time values.
Therefore, to foster motivation, the present study
utilizes the time fractional-order reaction-diffusion
equation in the Caputo sence to analyze growth of
tumors in the liver. Unfortunately, finding exact
solutions to most FDEs is a challenging task due to
their complex nature and non-linearity. To tackle this
issue, numerical methods play a crucial role. Among
the various numerical methods available, the finite
difference method stands out an effective and
commonly used approach!*. The Crank-Nicolson
method is one of the finite difference methods
renowned for its stability and accuracy, especially
when dealing with time-dependent problems!>?6,
Our goal in this study is to devise and develop the
Crank-Nicolson method to better comprehend the
growth of tumor cells.

Basic Definitions

This section provides some basic definitions about
fractional derivative operators.

Definition 1: The Gamma function I'(z) is defined
as follows*

I'(z) = fooo e “u?ldu 1

Definition 2: The a order Caputo derivative of the
function f(u, v) is**’
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Materials and Methods

The time fractional tumor growth equation (TFTGE)
is derived from the classical tumor cell growth model
proposed by Mubarak et al. It can be represented as
follows:

a(l
#2D6u2+p(c—ca)—Q(uv) 0<ac<l,
vuel[0,L],Vve][OT]. 3

The initial condition for the equation is given by:

c(u,0) = h(u), Yu€[0,L]. 4
Additionally, the boundary conditions are as follows:
c(0,v) = ¢y, ac(gl;,v) =0, Vv Ee|[O0,T]. 5

a
In the equation, the term ZT; is defined in the Caputo

sense. Here, ¢ = c¢(u, v) represents the concentration
of tumor cells at a specific point in space u and time
v, D denotes the coefficient of diffusion, p represents
the rate of cell proliferation, c, is the concentration
of normal cells at time v = 0, h(u) is the starting
shape of tumor and Q(u,v) represent a function
showing an effect of applied meditation at time v.
The term ¢ — ¢, represents the relationship between
normal cells and tumor cells. This term describes the
flow of tumor cells in the liver.

Finite Difference Scheme

To develop the Crank-Nicolson method for TFTGE
Egs.3-5, the interval [0,T] is divided into N equal
sub-intervals with a step size Av, and the interval
[0,L] is divided into M equal sub-intervals with a
step size Au. Therefore, u; = iAu (0 <i < M) and
v = kAv (0 £ k < N). The notation c(u;, vy ) and
ck represent the exact solution and approximate
solution of TFTGE Eqgs. 3-5 at mesh point (u;, vy)

respectively. At time level v =v,,,, the
discretization of fractional derivative g—a of order
a (0 < a <1)isgiven as!*8

f@; 2) dn, fora € (0,1).

fora=1.

8% @A)~ ¢ k+1
(ava)(ulvk+1) re-a) (C' -
(Av)~ ¢ k—-j+1
ra-a2m1 W

clk) +

— cf_j) + 0(Av), 6

where, w; = (j + D7 —j17% v =1,2,3,.
2
Furthermore, the space derivative % is discretized

using the following second-order central difference
approximation,

k+1 k+1 k+1 k
(a c) Gy —2¢ T HCiy +cl 1—2c +Citq +
auz’ WiVks1) — 2AU2

0(Au?). 7

Now, applying Eq. 6 and Eqg. 7 to Eqg. 3, it can
transform it into the following form,

k—j k—j
= cH+ Tk, w7 =) =
r(cktt — 2cf + Clk++11 +ck,—2ck+ k) +
iup(cl - Ca) .u'Ql ! 8

@ —
where, r = % and u =T(2—a)(Av)“.

After simplification, Eq. 8 can be written as

—rcftl+ (1+ 21")c{c+1 rclkfll =rck +(1-
2r — b1 + ,up)ck +rek, + ZF (wj —
W)+ wie? — upeq — pQF. 9

Also, c(u,0) = h(u) (0 <u < L) isdiscretized as
follows

c(u;, 0) = h(u;), implies cd=h(w), i =
0,1,2,..,M. 10

Finally, the discretization of the boundary conditions
in Eq. 4 and Eq. 5 are presented as follows

c(0,v4) = co, implies cf = ¢, Vk = 0.

11
and
9c(L,vg) Ch+1—Ch-1 _
o = = 0, implies YV 0.
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This results in the relationship, cf,; = ck_;,
vVk=0. 12

Thus, from Eqgs. 8-12, the complete discretization of
the time fractional tumor growth equation in Egs. 3-
5 is provided as follows

—rct, + (1 +2r)c}
pp)e + ey

—rchy=rcd, +(1—-2r+
—upcg — pQp, fork =0, 13

—rct + (A +2r)c —rch, =1t + (1 -
2r —wy + up)ei +rciyq +wicd —upeq —
,uQil, fork =1, 14

—reftl+ (1 + 27’)cik+1 refitt =rck + (1 -
2r —wy +up)cf +refiy + Zf:ll (w; —

Wj+1)cf_] +wyc? — upc, — uQk, fork =
2,3,...,N, 15
LC:c¢ =h(w), 1<i<M, 16
B.C.: co—co,c,\’f,l—cM+1,0<k<N 17
_ D(AV)?T(2—-a) _ _ a
where r = ~wr =T(2 - a)(Av)* and
=+ D¢ v]-123

In matrix form, the representation of the Crank-
Nicolson method given in Egs. 13-17 is as follows:

AC* =BC° +S°, fork =0, 18
2=(B-wDC*+w,;C°+S1, fork=1, 19

AC**t = (B —wyD)C* + 35T (w) —
Wiy1) C¥7 + wy €O + S¥, fork > 2. 20

Here, I is an identity matrix of order M, C° =

(c,c3, CM)T Ck_(cpcz»-- )’ sk =
(reg™ +reg — ppcg — uQY, —ppcy —
uQé‘.-'-,—upcA — 1Q2,)", and both A = [a;;] and
B = [b;;] are square matrix of order M, where
1+2r, ifi=},
-7, ifi =j+2,
al-j— =T, lf]:l'l'z,
|-2r, ifi=M,j=M-1,
kO , otherwise.

And

(1=2r—upup, ifi=j,
[+, ifi=j+2,
bijj =<7, ifj=i+2,
2r, ifi=M,j=M-1,
0, otherwise.

Using the numpy, scipy and matplotlib modules of
the Python programming language, the matrix
system in Eqgs. 18-20 is easily solved to obtain the
numerical solution of TFTGE in Egs. 3-5.

Stability

Here, the stability of the solution obtained by the
Crank-Nicolson method Egs. 13-17 developed for
the TFTGE Eqgs. 3-5 is proven.

Lemma 1: For all j = 1, the coefficient w; satisfy
the following conditions®®

Lemma 2: If a, b and c are constant numbers, and if
Ak denotes the eigenvalues of the matrix8

then, Ak—b+2\/_cos( ) 1<k<M.

Lemma 3: The Matrix A is characterized by the
following properties:

M2 =21,Vj=123,.,M (i)IA],<1.

Proof: Let A be an eigenvalue of a square matrix
[a;;]. Then, using Gerschgorin’s disc theorem,
each eigenvalue 4 of a square matrix [a;;] satisfies at
least one of the following inequalites:

11 < Xi, |aij| 21
Al = ;| — ZiL1 i layl 22

Now, inequality Eg. 22 is used to establish the
condition (i) for the matrix A as follows:

LA =1+2r|=|-71|=1+2r—-r>1.

;D] =z 1+2r|—|2r| =21+ 2r—-2r=1,Vi
=23, ,M—1.
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And,
[Ay(A)] =1+ 2r| —
Thus, |;(A)| =1, j=123,.., M.

|12r| =1+ 2r —2r = 1.

To prove condition (ii), it is demonstrated that, ||
Ally= lrzlj%)lfll/lj(A)L

Therefore, based on condition (i), it can be deduced
that || A |I,> 1. Consequently, | A= |I,< 1.

Lemma 4: The Crank-Nicolson method, given in
Eqgs. 13-17, developed for the time fractional tumor
growth equation Egs. 3-5, is solvable for each time
step unconditionally.

Proof: To demonstrate the solvability of Egs. 13-15,
it is suffices to establish the invertibility of matrix
A, It is observed that both the first and last rows of
matrix A are diagonally dominant. Moreover, for all
other rows, the diagonal element is 1 + 2r, and the
sum of the absolute values of non-diagonal elements
in the same row is |(—7)| + |(—1)| = 2r.

Consequently, for each row, the inequality 1 + 2r >
2r holds, thus confirming that matrix A is strictly
diagonally dominant. As a result, matrix A is
invertible, thereby ensuring the solvability of the
finite difference scheme.

Lemma 5: For the matrix B, it holds that || B [I,<
1+ up.

Proof: If 4;(B) is the eigenvalue of the tridiagonal
matrix B, then utilizing Eq. 21, one can express:

AB)|<1-2r4+up+r=1—-r+pu<1+pup.
and

B <1-2r+pp+2r=1+up, Vj=
2,3,, M.

This shows that,
1,2,3,---,M

LB <1+ pp,v =

Hence, |l B Il,= 11;11;2\(4|/1j(3)| <1+ up.

Theorem 1: The Crank-Nicolson method Egs. 13-17
used to solve the time fractional tumor growth
equation Egs. 3-5 yields an unconditionally stable
solution.

Proof: To demonstrate the unconditional stability of
the developed finite difference scheme, it is
necessary to show that

IC™ I, ENCO Iy, n=123,..

Where ¢ is a positive number that does not depend
onu and v.

For n=1, Eq. 18 can be written as

Cl=A"1BC + A1S°.

“ECHILTATIB N CO Ny +1 AT 1IN SOy,
<S@+pp) 1COH, +11S° 1y,

S@+up) N1C0l+& 1 C0 5,
where || S° |l,= &;,a constant.

S@+pp+ED)NCO Iy,
<ENCOI,.
This proves the result for n = 1.

Let us assume that, | C* [l,< & Il C° ||, foralln <
k.

Now, forn = k + 1, Eq. 20 can be written as
k-1
C**l =A"Y(B—wDCF + A7 Z (w;
j=1
— W) CT + A7 w, CO
+ A™15K,

S = AT I (VB Tt w1 T 1l CE T

A~ I, Z |w; — wjiq|

| ck=J ||2+|wk| AL,
I COlly +1L A~ 1,0 SK Iy,

< (1 +pp+w) Il CK llp+ [(wy —wy)
I C*=1 |4+ (wy — ws)
I CE72 My e+ (Wy—q — wy)
Il CL L]+ wy I CO Iy +1 SE Iy,

< (1 +pp +wpéy
I coll,
+ [(wy —wy) + (wy —w3) + -
+ Wi—1 = wi)1&2 11 CO N+ wy
Il COll+ & 11 CO g,

< [A+pp +wpé +wy + (wy
+&]1CO,,

— W&z + wy

<ENCO I,

Therefore, by induction, for all positive integer n,
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I C™ 1I,< &1 C°l,, where& is constant number
independent of u & v.

This demonstrates that the scheme s

unconditionally stable.
Convergence

This section is devoted for the convergence of the
scheme. Let Q = [0, L] x [0, T]. Consider,

—k
C = (c(ug, i), c(uy, vg), ..., c(uy, ve))T be the
vector of exact solution of the TFTGE Egs.3-5 at
time level v,. Let t* = (z¥,7%, ..., t8)T be the

. . . —k .
truncation error vector at time vy. Since C is the
vector of exact solution, the Egs. 18-20 can be
written as

—1 —0
AC =BC +S°+1!, for k=0. 23
-2 —1
AC =B -wDC +w;C°+St+7%, for k =
1. 24

—k+1 —k
AT = B-wDC +3 (wy -
—(k—j —0
wie)C P 4wy T+ Sk + T8 for k > 1. 25

Thereom 2: The Crank-Nicolson method described
by Eqs. 13-17 developed for the time fractional
tumor growth equation Egs. 3-5 is unconditionally
convergent.

Proof: Let, E¥ = (ef,eX, ...,ef)T be the vector of
error appear in numerical solution at time level ty.
Furthermore, assume that

leff| = max |ef| =l E* ll, and tf
1<isM
= max |7f|,for [ = 1,23, ...
1<isM
Then, from Eq. 13,
let| = |-rely + (1 + 2r)e! —rel |

<rlely|+ (A =2r +up)lel| +rlelyq| + |7/

< - 0 1
<(r+1-2r+up+ r)lrélizé)ﬁel | + 1@2%11 |
_ 0 1

=@ +pup) 1 E® llo+ fgggth |

1 F1 0 1

SEY < (L4 up) I EO oo+ fé‘é’ﬁ;"i |

Now, from Eq. 14,

le?| = |-ref, + (1 + 2r)e? —re? |
<rlelq|+ @ —2r—w, +pup)let| +
rlel |+ wylel| + |77
< (r+1—2r+up+r)11?£3\<4|e?| +

max |z}
1<isM

= (1+1p) Il E* oo ma |2].
I E? o< (1 + pp) Il EY o+ max [77].
Further, from Eq. 15,
lef*| = |-reft + (1 + 2r)ef*t — reltt

<rlef,l+1- Z}f +up —wy)lef| +rlef |
-1

.
£ W= wlef I+ bile?|
j=1
+ [T
Slr+@—-2r—>by+up)+r+w; —w,)

+ Wy —ws3) + -+ (Wg—qg — wg)

+ wiel max [ef| + max |7

— K k+1
=1 +up) IE* o+ fé‘é’,&,hi |
This is true for every k. Therefore, it follows that

k+1 k k+1
I E** Nleo< (14 pp) I E* ey max |1,

Hence, by induction, for every positive integer n,

n n—1 n
TE™ o< (14+up) | E" " llo+ 12‘?154'” l.
26

Since, Il E° ll,,= 0 and continuous application of Eq.
26 implies that:

n-1
n j n+i-j
IE™ < Z (1 + up) 1r2izé>n(/l|ri |
j=0
Since, max [t"| > 0 as (Au,Av) - (0,0), it

1<isM
implies that Il E™ ll,— 0 uniformly on Q as

(Au, Av) - (0,0). Therefore, this shows that for any

u and v, the vector C™ converges to ¢ as
(Au, Av) - (0,0). This proves the convergence of
the method.
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Results and Discussion

In this section, the following time fractional tumor
growth equation is studied:

9% _ D d%c 06
av_a_ ﬁ+p(c_ca)_Q(u»v)»ue[ ) ]rve
[0,40],0 < a < 1, 27
with the initial condition: c(u, 0) = ¢y, u € [0, 6],
28
. i dc(6,v)

and the boundary conditions: c(0,v) = cy, P
0,v € [0,40]. 29

The literature-based physiological indicators given
by Mubarak et al.! are considered to assess the
tumor’s size and its decreasing rate after the
application of medication. The starting size of tumor
is considered to be constant, that is, ¢y =
205.67449 cm3, the effect of applied medication at
time v =0 is Q(u,v) = 0 and Q(u,v) = ae?, if
v>0, where a=1.075 and b =-0.05 are
simulation parameters. The concentration of normal
cellsis, c; = 191.91449 ¢cm3. The proliferation rate
is, p=0.0281/day. The value of diffusion
coefficient is, D = 0.005 cm? /day . The system in
Egs. 18-20 is solved for the time fractional tumor
growth equation EQgs.27-29 using the Python
program, and the results are presented graphically.
The numerical solution of time fractional tumor

206 4

— a=1
— a=0.98
— a=0.96

Tumor size(cm?) c(u, v)

o 5 10 15 20 25 30 35 40
Time in days
(a) Thickness

=05 cm

Tumor size(cm?) ¢(u, v)

o 5 10 15 20 25 30 35 40
Time in days
(c) Thickness v=2.9 cm

growth equations Eqgs. 27-29 is obtained by setting
Au = 0.1,Av = 0.1, and considering various values
of a.

The model, based on the parabolic partial differential
equation for predicting tumor growth in liver
metastases disease with a time fractional derivative
in the Caputo sense, is analyzed using the proposed
Crank-Nicolson method. Graphical visualizations for
different tumor thicknesses (u) and parameter values
(a) are presented at various time intervals to
estimate the effect of the applied medication on the
tumor size. The solution of the time fractional tumor
growth equation Egs. 27-29 is obtained by solving
the system of equations Egs.18-20 which provides
information about the tumor size at any given time v.
In Fig. 1 and Fig. 2, the dynamics of tumor growth
are plotted in two different situations: one in
presence of medication term (i.e., Q(u, v) # 0), and
the other in the absence of medication term (i.e.,
Q(u,v) = 0) respectively, both for distinct
thicknesses (u) of the tumor. Fig. 1(a-d) depicts the
profiles of decreasing tumor size after medication for
various tumor thickness values and different values
of a. From the observations made based on Fig. 1, it
is evident that, during the medication period, the size
of all tumors decreases rapidly.

Tumor size(cm?) c(u, v)

[a] 5 10 15 20 25 30 35 40
Time in days
(b) Thickness uv= 1.0 cm

202

198

Tumor sizefem?) e(u, v)

o 5 10 15 20 25 30 35 40
Time in days
({d) Thickness uv=5.9 cm

Figure 1. Tumor size in presence of medication with respect to time for different tumor thickness

u=20.51.0,2.9,5.9and fora =1.0,0.98,0.96.
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This phenomenon can be attributed to the application
of the medication, which is intended to impede tumor
growth. At the initial stage of medication, the
concentration of the drug within the tumor is higher,
leading to a more significant inhibitory effect on
tumor growth. Consequently, the tumor size exhibits
a notable reduction during this period. As time
progresses and the medication continues to take
effect, the impact of the medication gradually
decreases. This decrease in the medication’s efficacy
is often attributed to various factors, such as tumor
resistance or the drug eliminations from the body. As
a consequence, the rate of tumor size reduction
diminishes, resulting in a slower decrease in tumor
size as compared to the initial stages of medication.

Fig. 2(a-d) displays the prediction of tumor size
response over time in the absence of medication for
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distinct tumor thicknesses. It is observed that when
no medication is used to stop the tumor growth, the
tumor exhibits uncontrolled and unrestricted growth.
The absence of any inhibitory effect from medication
allows the tumor cells to proliferate rapidly, leading
to a significant increase in tumor size over time. This
unregulated growth can have severe implications for
the patient’s health and may lead to further
complications and metastases. It is observed that
despite the differences in tumor thickness among
various cases, tumors with different thicknesses still
follow the same growth pattern. This finding
suggests that the tumor’s intrinsic biological

properties play a more dominant role in determining
its growth behavior rather than its initial thickness.
The results presented in Fig. 2 underscore the
importance of effective medication in controlling
tumor growth.
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Figure 2. Tumor size in absence of medication with respect to time for different tumor thickness

u=0.51.0,2.95.9 andfora =1.0,0.98,0.96.

By comparing the dynamics in the presence and
absence of medication, it becomes evident that the
applied treatment plays a crucial role in restraining
tumor growth and can be a critical factor in managing

the disease progression. The obtained graphical
results coincide with the physiology of tumor
dynamics obtained by Mubarak et al.
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Conclusion

The time fractional-order tumor growth equation in
the Caputo sense has proven to be a successful tool
for demonstrating tumor growth dynamics in liver
metastasis diseases. The numerical solution of the
TFTGE is obtained by using the higher order Crank-
Nicolson method. Furthermore, the stability and
convergence of the suggested method have been
thoroughly investigated and demonstrated. It has
been shown that the method is unconditionally stable
and convergent, ensuring the reliability and accuracy
of the obtained results. The use of Python
programming language has been particularly
effective in producing the numerical solutions and
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