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ABSTRACT

Molecular similarity, governed by the principle that “similar molecules exhibit similar properties,” is a pervasive
concept in chemistry with profound implications, notably in pharmaceutical research where it informs structure-activity
relationships. This study focuses on the pivotal role of molecular similarity techniques in identifying sample molecules
akin to a target molecule while differing in key features. Within the realm of artificial intelligence, this paper introduces
a novel hybrid system merging Swarm Intelligence (SI) behaviors (Aquila and Termites) with Neural Networks. Unlike
previous applications where Aquila or Termites were used individually, this amalgamation represents a pioneering
approach. The objective is to determine the most similar sample molecule in a dataset to a specific target molecule.
Accuracy assessments reveal a manual evaluation accuracy of 70.58%, surging to 90% with the incorporation of Neural
Networks. Additionally, a three-dimensional grid elucidates the Quantitative Structure-Activity Relationship (QSAR).
The Euclidean and Manhattan Distance metrics quantify differences between molecules. This study contributes to
molecular similarity assessment by presenting a hybrid approach that enhances accuracy in identifying similar molecules
within complex datasets.
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Introduction

Introduction (background and problem statement)

In the intricate landscape of artificial intelligence
and optimization, addressing complex problems char-
acterized by overwhelming complexity, uncertainty,
and inherent stochasticity is a formidable challenge.
Swarm intelligence (SI) algorithms, drawing inspira-
tion from biological behavior and social interactions,
have emerged as promising solutions. However,
despite their recognized potential, a clear understand-
ing of the practical applications of SI algorithms in
real-world scenarios, particularly those involving in-
tricate decision-making processes, remain selusive.1

As scientists have delved into the study of bio-
logical behavioral intelligence since the Cape bee

study in 1883,1 the need for effective approaches
to decentralized decision-making, akin to how bees
choose nesting locations, has become increasingly
apparent. Swarm intelligence algorithms, encompass-
ing artificial neural networks, fuzzy systems, and
evolutionary computing, offer a unique avenue for
addressing these challenges.1

Research objectives

Our research aims to harness the potential of swarm
intelligence algorithms in conjunction with meta-
heuristic optimization techniques inspired by natural
processes. These techniques, such as evolutionary
algorithms, Simulated Annealing (SA), and Swarm
Intelligence (SI) algorithms, demonstrate efficacy in
solving challenging optimization problems.2,3
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Natural sciences rely on models for interpreting
findings and making predictions. Theoretical
chemistry focuses on elucidating chemical processes,
refining methodologies for reactive process models.
The dimensionality problem in molecular quantum
dynamical calculations introduces limitations to
precision, prompting the use of approximations for
quantum dynamics. Molecular docking techniques
predict chemical affinities and modalities for scien-
tific and medicinal purposes. Flexible ligand docking
strikes a balance between accuracy and efficiency,
simulating the process in docking programs. The
effectiveness of these simulations depends on the
chosen search method and scoring algorithm, with
the scoring function guiding the search method and
assessing the quality of the docking conformation.4,5

Contribution of the study

This study contributes to the growing interest
in meta-heuristic optimization techniques by show-
casing their applicability and success in simulating
biological or physical processes. As these algorithms
excel in avoiding local optima, they offer valuable
solutions to real-world problems where traditional
methods may fall short.1–3

Outline of the paper

This paper is structured to delve into the applica-
tion of swarm intelligence algorithms in addressing
challenges encountered by analytical toxicologists,
particularly in the forensic drug analysis of new il-
legal compounds. The subsequent sections explore
molecular similarity analysis, cheminformatics, theo-
retical chemistry, molecular docking techniques, and
the evaluation of pharmaceutical similarity.6,7

Similarity in various fields

The idea of similarity and its relation to hu-
man understanding are rooted in unconsciously
formed associations based on prior experience. Hu-
man minds generate new ideas by comparing new
information with stored knowledge, reflecting the
ancient Greek philosophy that underlies modern
science’s understanding of similarity. Logical in-
ference relies on analogous reasoning, which in-
volves careful comparisons of structures. Similarity
proves essential in various fields, including chem-
istry and mathematics, where analogous figures and
systems play a crucial role. Quantifying similarity
using clear parameters is advantageous for scientific
applications.8

Materials and methods

Materials

Swarm intelligence (SI)
The term “SI” was first applied to the “intelligent”

actions of cellular robotics systems. Subsequently,
the idea developed into a well-established research
field with methodologies, strategies, and AI problem-
solving algorithms. The actions of fish, insects, and
birds, as well as their capacity to function as a group
of agents, are the main sources of inspiration for SI
techniques. These social actors do really have a rela-
tively low level of individual intelligence. Yet, when
they socially interact with one another or their envi-
ronment, they show signs of being able to complete
difficult tasks without the aid of a centralized author-
ity, like as the colony’s queen. Anomaly detection has
effectively used SI algorithms due to their develop-
ment, simplicity, resilience, and adaptability.9 There
are various SI algorithms; here, concentrating on two
(Aquila and Termite).

Aquila optimizer (AO)
The Aquila, a raptor that is well-known throughout

the Northern Hemisphere, was suggested by Abuali-
gah in 2021.3 The Aquila species is the one that
is most widely distributed. Aquila belongs to the
family Accipitridae, like all birds. The rear of the
neck of an Aquila typically has lighter Golden-brown
plumage. This species of Aquila youngsters frequently
have a white tail and very faint white markings on
their wings. Aquila hunts a variety of prey, primarily
ground mammals like squirrels, marmots, hares, and
rabbits, using her speed, agility, strong feet, and enor-
mous, sharpened talons. Aquila can be seen in nature,
along with their distinctive characteristics. Aquila
may maintain 200 km2 or larger holdings. They con-
struct substantial nests above mountains and other
elevated terrain. They reproduce in the spring and are
likely to live together for the remainder of their lives
because they are monogamous. The eggs, which the
female can lay up to 4, are subsequently incubated
for 6 to 120 weeks. In around 12 weeks, one or
two newborns usually reach adulthood. These young
aquila frequently reach their peak of confidence in
the fall, at which point they disperse far in order to
claim territory. Aquila is one of the most researched
birds in the world because of its courageous hunting
behavior. Male Aquila caught considerably more prey
when hunting by alone. Aquila hunt squirrels, rabbits,
and many other creatures with their speed and razor-
sharp claws.

They have also been reported to target mature deer.
The ground squirrel ranks as the second most 125
noteworthy animal in Aquila’s diet. The Aquila are
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known to hunt primarily using four distinct methods,
each of which has its own special advantages. Most
Aquila are adept at switching between many hunting
methods quickly and expertly depending on the situ-
ation.2 It has a variety of hunting methods, but we’ll
focus on the expanded exploration strategy, which
involves a vertical stoop and a high soar. This strategy
involves the Aquila flying well above the ground to
thoroughly scan the area before making a vertical fall
after it has spotted the target.2,3,10

Termite colony
Termites are secretive, gregarious insects that lack

vision. Depending on the species, they can dwell
in colonies with up to a million termites. The so-
cial insects exhibit complex behavior, such as group
decision-making and nest construction. Many opti-
mization issues are currently being addressed using
swarm intelligence, a method of rational collective
decision-making. Termites, along with ants, bees, and
other social insects, have one of the most complex
forms of swarm cognition. In addition to interacting
with one another, they also interact with their sur-
roundings. The termite colonies display a division of
labor and are made up of groups with distinct roles
within the community. The laborers, the military,
and the reproductive are the three main categories.
Due to their blindness, termites use chemical signals
(pheromones) and vibrations to communicate. The
social structure of termites is aided by pheromones.
They use scent to identify each other in the nest. Each
colony creates its own distinct smell. Additionally,
termites release pheromones to direct the colony to
food or warn it of danger. The pheromones that the
foraging termites emit while digging underground
are released from glands on their abdomen. When
a food source is found, the intensity of this sort of
pheromone increases. As a result, the food supplier
can hire more staff. Similar to this, whenever the
colony is attacked or invaded, the soldiers release a
different sort of pheromone, which aroma alerts the
other termites to oncoming danger.

The behavior of the termite colony is also influ-
enced by environmental conditions. Temperature and
moisture are the two main components. Depending
on the climates that termites like, foraging activity
depends on soil temperature and is very low during
extremely cold or hot weather. The ideal tempera-
ture ranges from 21oC to 36o C depending on the
species. Termites require moisture, either from their
surroundings or their food supply. Termites use their
technical talents to build tubes and tunnels to pre-
serve the proper amount of moisture within and
maintain their soft cuticle. Termites in a colony make
stochastic decisions that determine their movement

patterns. Based on the strength of the pheromones in
the area, termites choose their movement pattern. As
a result, each termite can carry out complicated ac-
tivities by following a few basic behavioral principles.
The termite swarm reacts to the new circumstances in
an adaptable manner. A wide variety of dynamic op-
timization issues can be solved using this technique.
This termite intelligence has proved crucial in the
development of a unique optimization technique for
WAN traffic control.11

Termites, globally distributed social insects with
a sophisticated structure, exhibit a life cycle com-
prising the reproductive, soldier, and worker castes,
each assigned specific colony maintenance tasks. The
king and queen solely reproduce, contributing to mil-
lions of eggs annually, while termite workers tend
to incubate and care for the eggs. Worker castes,
constituting 70–80% of the colony, handle labor re-
sponsibilities, including food-related tasks. Soldiers,
comprising 20–30%, guard the colony and engage in
defense. Reproductive castes, represented by a sin-
gle viable pair, the queen and king, ensure colony
reproduction through annual nuptial flights. Ter-
mites communicate chemically and mechanically to
coordinate activities, impacting colony growth and
survival. Despite being mostly blind, termites rely on
pheromones for navigation and sharing food source
information on walkways.12

Neural network
Neural networks, inspired by the complex network

of neurons in the human brain, have become pow-
erful tools for enhancing learning systems. These
networks consist of artificial information-processing
units, with nodes, weights, and layers playing vital
roles.13 The topology and internal parameters of neu-
ral networks, such as the number of inputs, outputs,
hidden layers, neurons, weights, biases, and activa-
tion functions, greatly impact their functionality and
performance. Finding an optimal topology and in-
ternal parameters is crucial to ensure the quality of
the final neural network model. There are various
types of neural networks based on their architec-
ture, connectivity, and specialized use cases. Some
commonly used types include feedforward neural net-
works (FNN), convolutional neural networks (CNN),
recurrent neural networks (RNN), long short-term
memory (LSTM), generative adversarial networks
(GAN), autoencoders, and reinforcement learning
(RL) networks.14

Feedforward neural network is a fundamental de-
sign where information flows from input nodes to out-
put nodes in a forward direction without cycles. This
type of network is often trained using strategies like
adjusting weights based on the reverse of the output
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result.15 FNNs consist of interconnected neurons or-
ganized in layers, and they can approximate any con-
tinuous function, making them versatile for solving
various problems such as pattern recognition, cluster-
ing, classification, and more.13 Activation functions
play a crucial role in neural networks by determin-
ing the activation state of a neuron based on the
input it receives.16 Common activation functions in-
clude step functions, sigmoid functions (e.g., logistic
function and hyperbolic tangent function), and the
softmax function. These functions enable non-linear
transformations and ensure smoothness, differentia-
bility, and computational efficiency in the network.17

To evaluate the performance of neural networks,
loss functions are employed to measure the error
between the network’s predictions and the expected
output. Mean square error (MSE) and categorical
cross-entropy are commonly used loss functions.
The backpropagation algorithm, a first-order
gradient-descent technique, is widely used for
optimizing neural networks. It propagates the output
layer’s error backward through the hidden layers,
adjusting the weights based on the contribution to
the prediction outcome.15,18 During training, the
neural network iteratively updates its weights and
minimizes the error by comparing its generated
values with the ground truth.

Training techniques can involve stochastic/online
training, where redundancy in the training pattern
is addressed and dynamic learning is possible, or
batch mode training, which ensures a local minimum
and can be faster for larger datasets. Optimization
techniques for neural networks involve architectural
optimization, where factors like the number of nodes,
layers, and activation functions are optimized. In the
past, only the weights of connections were optimized,
but modern approaches include metaheuristic-based
optimization techniques that consider multiple ob-
jectives, such as generalization, model simplification,
and minimizing an approximation error.13 Hyper-
parameter tuning is a crucial step in deep neural
networks, particularly for classification tasks. It in-
volves finding the optimal hyperparameters that
govern the neural network architecture and the train-
ing process. Hyperparameter optimization (HPO) is
a key component of Automated Machine Learning
(AutoML) and helps achieve better performance and
accuracy in neural network models.19

Molecules
One of the most important concepts in biology,

chemistry, medicine, and pharmacy is the concept
of a molecule, which is an electrically neutral group
of two or more atoms bonded together through

chemical events. A molecule typically has a cer-
tain structure, and this structure—particularly for
organic molecules—can be highly complex. Molecule
characteristics are typically greatly influenced by
the structure of the molecule. The architectures of
molecules have a significant impact on their at-
tributes and capabilities.20

Small-molecules
Small molecules have continuously helped to ad-

vance medicine and address unmet medical needs,
saving countless lives in the process. Small molecules
have also proved essential in biomedical research as
chemical probes, helping to understand the biology
of disease. Over the past century, traditional small-
molecule medicines have dominated drug research.
The drug discovery toolbox has, however, expanded
to include more recent techniques, such as RNA-
targeting small molecules (RSMs) and proteolysis-
targeting chimeras (PROTACs), together with bio-
logical techniques, like antibody-based therapy and
cell- and gene-therapy. Most big pharmaceutical firms
now provide more modality-neutral funding for med-
ication research.21

Drugs
Drugs are substances, including proteins and chem-

ical compounds, that control a biological process.
Low molecular weight chemically produced sub-
stances are primarily referred to as small-molecule
medicines. While many discovered compounds have
a higher molecular weight than a typical small-
molecule medicine, which may have a molecular
weight below 500 Da. By creating complexes with
their targets, small chemicals can influence how dif-
ferent proteins function, including protein-protein
interactions. Small molecule drug discovery is a chal-
lenging process that calls for a wide range of skills
and numerous methodologies. Through phenotypic
screening with cell-based assays that enable the dis-
covery of new targets, small compounds can be
acquired. These compounds can also be acquired by
target-based drug discovery, which typically entails
candidate selection, assay development, Identifica-
tion of the target, confirmation of the target, hit
detection, hit to lead conversion, lead optimization,
and further development. Small-molecule drug devel-
opment relies heavily on medicinal chemistry since
medicinal chemists choose the methods to be used
for compound alterations. It is well knowledge that
challenges with drug discovery include choosing a
target, identifying an early hit, optimizing leads, and
efficacies.22
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Molecule similarity
To create molecules that are chemically superior

to a target molecule while remaining identical to it
is the goal of molecular optimization.23 The meth-
ods of Molecular Similarity are so important in the
fields of chemicals and pharmaceutical area. Such as
protein-ligand docking, biological activity prediction,
and database searching. Because of the similar prop-
erty principle, finding similarity between compounds
is very practical and it states that similar structures
in molecules can result in comparable characteristics.
Accordingly, many things in biological research can
be achieved by finding the structure similarity be-
tween molecules. Nevertheless, finding the structural
similarity between molecules is complicated since it
is not a measurable property for them. Sometimes,
external criteria cause different interpretations and
that makes it hard to develop a precise computational
method to find the molecular similarity.

Three basic parts are important to make a measure
of molecular similarity: First, the representation of
the molecule that encodes its features and at the
same time includes their associated weights. Second,
a comparing method for these representations to cal-
culate the difference which means a small difference
makes it more similar. Third, a function to evaluate
the similarity between them.24

In chemistry-related professions, determining how
similar molecules are structurally to one another is
a foundational work that can be advantageous for
many tasks that come later. In general, properties
of molecules are likely to be similar for those with
similar structures. However, a small alteration in a
molecule’s structure can frequently result in a signif-
icant shift in the way that the molecule behaves and
performs. Therefore, a fascinating and essential task
in domains related to chemistry is determining how
structurally similar different molecules are.

The examination of local and global structural
similarity between a novel medication and old phar-
maceuticals in the drug discovery process are the only
two downstream activities that can profit from the
capture of structural similarity between molecules.
The search for molecules that are structurally simi-
lar to a given query molecule in chemical databases
is one of the additional tasks.20 Cheminformatics is
built upon the idea of molecular similarity. It implies
that there is a propensity for molecules with “similar”
structures to have comparable properties.

The most popular methods for determining molec-
ular similarity involve recording the molecule as a
vector of numbers, which enables us to compare the
vectors that represent two molecules according to
their Euclidean or other distance. The Jaccard or Tan-
imoto similarity (TS) metric is frequently used when

dealing with binary strings (between zero and one).
Creating such a vector for the molecule involves,
among other things, calculating (or measuring) the
various “descriptors” of the molecule, such as clogP
or total polar surface area, from the molecule’s struc-
ture. The utilization of structural properties directly
and their encoding as so-called molecular fingerprints
is a more popular method for producing the encoding
vector of numbers. The MACCS, atom pairs, torsion,
extended connectivity, functional class, circular, and
other well-known ones are only a few instances. Once
encoded, the similarities can be compared to their
Jaccard or Tanimoto counterparts. Sometimes a “dif-
ference” or “distance” is indicated and expressed as
1-TS (a true metric). The greatest and most well-
known framework for carrying out all of this is RDKit
(Pathon v3.6.8) (www.rdkit.org), which offers nine
methods for developing molecular fingerprints at the
moment. The issue is that the molecules that are
“most similar” to a target molecule frequently differ
greatly, both qualitatively and quantitatively in terms
of the TS values of the various fingerprints.25

QSAR
Hansch and Fujita, in the 1960s, rediscovered

Quantitative Structure-Activity Relationship (QSAR),
originally identified by Hammett in the 1930s.
Over 70 years, QSAR evolved with approaches like
4DQSAR, HQSAR, 2DQSAR, and 3DQSAR, compa-
rable to CoMSIA and CoMFA. Applied in diverse
chemistry branches, including pharmaceutical, agri-
cultural, environmental, and toxicological fields,
QSAR is an established method. In pharmaceutical
chemistry, it is pivotal for drug innovation, integrated
into industrial drug design tools for over 50 years.
QSAR relies on molecular data, providing structural
and physical insights, aiding in the computer-aided
identification of potential compounds. This approach
accelerates compound synthesis, conserves resources,
and facilitates the creation of materials, medications,
and more. Despite challenges, the surge in QSAR
research papers underscores its rapid advancement,
emphasizing the importance of selecting appropriate
descriptors, be they theoretical, empirical, semi-
empirical, or derived from experimental traits, for an
efficient connection.26

Euclidean distance
Here, explain Euclidean distance because it was

considered in our research work. The following for-
mula can be used to determine how closely data
match the Euclidean Distance formula in Eq. (1):

di j =
√∑n

k=1

(
xik − y jk

)2 (1)

www.rdkit.org
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Where i acts as the cluster data center, j is the
attribute data, k is the indicator for each data, and
n is the total amount of data, and d is the distance
between i and j. Data at the cluster center are denoted
by xik and data on individual nodes are denoted by
yjk.8,27

Manhattan distance
It is used to pinpoint the precise coordinate differ-

ence between two objects. The formula is as follows
in Eq. (2):

di j =
∑n

k=1

∣∣xi j − yik∣∣ (2)

Where i acts as the data center for the cluster, j is
the data on the attribute, k is the symbol of each data,
n is the total amount of data, xik is the data at the
cluster center to k, and yjk is the data on each data
to k.27 The difference between Manhattan distance
and Euclidean distance. Instead of the straight line
distance between two locations, this distance is the
sum of their east-west and north-south distance.28

Related work
In24 the authors categorized their similarity mea-

sures in the literature into two classes: graph-based
representation and vector-based representation. The
first one represents the molecule as a graph depend-
ing on the molecular atom-bond structure and the
comparison between molecules is achieved by graph
similarity techniques. The approach which has been
developed as a result of graph similarity techniques
for comparison is limited to specific graph struc-
tures. The second one is called fingerprint which
is a familiar concept in chemical informatics fields.
It is a binary vector indicating the features of the
molecule. Bit 1 represents the presence of molecule-
associated feature and bit 0 represents its absence.
It has computationally efficient pairwise comparisons
which are easy to use. In this case, some comparison
measures are used like Dice, Cosine, Tanimoto, and
Euclidean distance. This class also has some draw-
backs. In a molecular graph, fingerprints do not have
the ability to assess for certain a particular pattern
whether it is present or absent and that is because
in the fingerprint for a pattern when a bit is set to
1 means it is present with some probability only.
in addition, this approach does not consider molec-
ular topology. Graph representation of a chemical
compound is called a molecular or chemical graph
which is categorized based on the structural dimen-
sionality of the molecule into two-dimensional and
three-dimensional. Each vertex is representing one
atom. The edge between two vertices is representing
their chemical bond. In the three-dimensional molec-

ular graph, the edge between each pair of vertices is
representing that the two corresponding atoms have
a geometrical distance between them. The authors in
their paper represented the molecule by the labeled
reduced graph in three steps which they did explain
by building a molecule’s basic structural representa-
tion, identifying ring structures, and adding them as
a vertex to the reduced graph.

In20 The authors analyze two molecules using
graph - neural - networks, output their represen-
tations, and then include the output of the two
representations into a regression model to forecast
the real ground truth. They point out that the cal-
culation of the graph edit distance (GED), a widely
used metric for determining how similar molecules’
structures are to one another, is an NP-hard prob-
lem. According to them, the experimental findings
demonstrate that their model performs noticeably
better in GED prediction than previous molecular
representation learning techniques. Additionally, it is
demonstrated that their model is far faster than the
technique used to determine the precise GED. The
suggest methodology can serve as a guide for com-
parable drug discovery and molecular retrieval tasks.
The authors investigate the issue of determining how
similar molecules’ structures are. The structural - sim-
ilarity between molecules is typically expressed in
terms of graph similarity because a molecule’s struc-
ture may be represented as a graph. In general, there
are numerous techniques for determining how similar
two graphs are, such as iterative algorithms, feature
extraction techniques, and graph edit distance. Here,
they opt for graph edit distance (GED), a simple
and purpose-built metric that works with all different
kinds of graphs. However, one well-known problem
with calculating GED is that it is an NP-hard task,
which means there isn’t an algorithm that can do it in
a polynomial amount of time. They suggest employ-
ing graph neural networks to approximately calculate
GED in order to handle the challenging problem of
doing so. A class of neural networks called graph
- neural - networks (GNNs) is used to process data
that is represented by graph data structures. Common
GNNs use a neighborhood – aggregation - technique,
which incrementally updates a node’s representation
by combining that of its neighbors and itself. The full
graph representation is then obtained by averaging all
node representations. They process a pair of molecu-
lar graphs using a GNN to produce their correspond-
ing representations, which are then input into an MLP
regressor to approximate the ground-truth GED. It
has been theoretically demonstrated that graph rep-
resentations learned by GNNs can preserve the graph
structure. As a result, the entire model may be trained
from beginning to end. They use actual molecular
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datasets to empirically test the performance of their
suggested model. The experimental findings demon-
strate that their model is capable of accurately
predicting the GED between molecules, with a pre-
diction error that is significantly lower than the range
of ground-truth GEDs. Additionally, their model per-
forms noticeably better than non-GNN molecular
representation learning techniques. In comparison to
the best baseline approach, it is able to decrease
the rooted mean squared error (RMSE) by 18.6%–
31.1%. Additionally, their approach cuts the running
time by 18.5 seconds to 702.5 seconds and performs
substantially faster than the precise GED calculating
technique. They also show that their model can really
capture the structural details of molecules by seeing
the chemical representations it has learned.

In29 Particle Swarm Optimization, a more
lightweight heuristic optimization method, is
recommended by the authors (PSO). A huge library of
molecular building blocks and chemical interactions
serve as a representation for the discrete chemical
space Hartenfeller suggested to use PSO to in
2008. In this case, they employ PSO to provide
a continuous chemical representation. Since the
swarm’s particles go through this simulation, which
corresponds to actual molecules in the chemical
space, they refer to their method as “molecular
swarm optimization” (MSO). They demonstrate
using three separate experiments how the suggested
method may be used to optimize molecules with
respect to a single objective, while subject to
restrictions involving chemical substructures, and
with respect to a multi-objective value function.
This can be used to represent the chemical space
latently via a compressed embedding. The latent
space that results from the model’s training on a
large dataset of over 75 million chemical structures
from diverse sources represents a wide range of
chemical space that can be investigated. In their
prior work, they also showed how to effectively
build molecular descriptors for QSAR models using
the learned molecular representation (quantitative
structure-activity relationships). Furthermore, when
changes in the latent space are reversed, smooth
changes in the discrete chemical space’s structural
and molecular properties follow. For technical details
concerning our system, interested readers are advised
to read the original publication. They asserted that
their method might fast enhance a certain starting
chemical’s anticipated drug-likeness or biological
activity. This demonstrates how their approach to
optimization can easily navigate the chemical space
created by their embedding that has been pre-trained
while still completing single-parameter optimization
in a timely manner. However real-world drug design

circumstances are substantially dissimilar from these
examples. No structural constraints are used now to
manage the structure’s growth. This implies that the
novel, improved compounds might have a structural
variation from the indicated starting points or
include moieties that are hazardous or unstable. New
drug discovery initiatives usually focus on chemical
families and their analogs. As a result, in the section
that follows, they advise putting limitations on the
chemical structure when optimizing. They contend
that their techniques can successfully maximize
molecules for a number of goals, such as increasing
target binding affinity, partition coefficient logP,
or anticipated drug-likeliness as measured by a
quantitative structure-activity relationship (QSAR)
model. Their suggested approach outperforms the
baseline approach in terms of locating the best
solutions while achieving a significant decrease
in processing time. In the more standardized
benchmark package GuacaMol, here it exceed
baseline approaches in 9 out of 12 tasks that weren’t
already fully addressed by the best baseline method.
They conclude by demonstrating the effectiveness
of the suggested technique in additional trials. It
must be stressed that although the optimization
cycles in this study produce positive results for
improving molecular properties, they are still based
on expected values for the qualities. This can be
highly problematic when QSAR models are applied
in circumstances outside of their intended field of
use. Thus, they advise restricting the application of
our suggested technique to areas of the chemical
space that can be adequately represented by the used
functions. Using active learning to integrate in-silico
optimization with practical experiments would be
an even better approach. So, while extending into
uncharted chemical space, the QSAR model might be
altered, perhaps preserving some level of predicted
accuracy.

In30 the Peroxisome proliferator-activated recep-
tor Y (PPARy) is a target for the onset of diabetes
mellitus, and its agonists have been developed as a
medication that serves as an important research tool,
according to the authors. A number of N-benzyl ben-
zamide derivatives have been subjected to 3D-QSAR
and molecular docking investigations using (CoMFA),
(CoMSIA), and surflex-dock approaches to develop
models that look at the structural requirements of
PPARy agonists. The main structural characteristics
of PPARy agonists that are responsible for biolog-
ical activity may be identified based on the data,
according to the scientists, who asserted that these
models have excellent statistical reliability and good
predictive potential. They stated that this study might
be valuable in elucidating the PPAR agonist potential
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of N-benzyl benzamide derivatives. The training set
consisted of 27 compounds, and the test set included
6 compounds. In the training and test sets, the CoMFA
and CoMSIA models showed a respectable capacity
for prediction. Compound 24 was chosen as the tem-
plate and related reference molecule because it had a
higher potency than compound 19, which was discov-
ered to be the case. Surflex-dock was used to dock the
substances to PPAR’s binding site and get potential
binding conformations. The newly created compound
N1, N9, and N12 have docked to the relevant binding
sites in addition to the template (compound 24c).
Despite having the highest activity in the training set,
compound 24c, compounds N1, N9, and N12 have
higher docking scores. The results of the current study
showed that the CoMFA and CoMSIA models might be
used to design new, powerful compounds and to cal-
culate the QSAR of PPARy agonists. This also helped
forecast the chemical composition of the newly cre-
ated drug and the significant activity characteristic
effects on PPARy. The Distill alignment approach
has been used to accomplish molecular alignment, a
crucial step in the creation of CoMFA and CoMSIA
models.

The study limitation
The proposed study, utilizing a hybrid system of

Aquila and Termite behavior combined with Neu-
ral Networks, aims to determine the most similar
molecule in a dataset compared to a target molecule
using a 3D grid and Quantitative Structure-Activity
analysis. While this approach presents innovative as-
pects, it is essential to acknowledge its limitations:

The effectiveness of the integrated hybrid system
heavily relies on the parameters and settings of
the Aquila Algorithm, Termite Behavior, and Neu-
ral Networks. Variability in these parameters may
lead to different results. Additionally, the generaliza-
tion of the model to diverse datasets and molecular
structures might be a challenge. The success of the
Aquila Algorithm, which controls the rotation and
translation of molecules, is contingent on the initial
parameters and random number generation. Sen-
sitivity to these initial conditions may affect the
reproducibility and robustness of the results. The im-
plementation of swarm intelligence, particularly the
Aquila Algorithm and its emulation of swarm behav-
iors, introduces complexity. The intricate dynamics of
swarm intelligence algorithms may be challenging to
fully comprehend and control, potentially impacting
the reliability and interpretability of the results. The
study focuses on the quantitative structure-activity
relationship (QSAR) as a measure of similarity. While
QSAR is a valuable metric, it may not capture all
nuances of molecular similarity, especially in cases

where specific molecular interactions play a crucial
role. The approach assumes uniformity in the rep-
resentation of molecular structures in the 3D grid.
Variations in molecular complexity and size may not
be fully accounted for, potentially leading to oversim-
plifications in the similarity assessment. The process
of organizing molecules in 3D grids and applying
the integrated hybrid system may demand significant
computational resources. This limitation can impact
the scalability and accessibility of the method, espe-
cially for large datasets.

Methods

By organizing molecules in space and assigning
their molecular fields to a 3D grid, R.D. Cramer
with M. Milne established the first 3D comparison of
molecules in 1979.31 The current research trying to
find the similarity between some three-dimensional
molecules in the data set compared with one molecule
called the target molecule. In fact, it aims to find
the most similar molecule in the data set (sample
molecule) compared to the target molecule. Quantita-
tive Structure-Activity has been used to measure the
similarity between them. The first thing is to fetch
the molecules from its file and represent them in
three-dimensional way. Each molecule is a number of
atoms represented as three-dimensional coordinates.
To measure the molecule’s quantitative structure-
activity it is putting in a three-dimensional grid with
particular lengths (x, y, and z).

All operations above are controlled by the In-
tegrated Hybrid System of (Aquila and Termite)
Behavior and Neural Networks Algorithm. First, use
the Aquila Algorithm which is a type of swarm intel-
ligence that controls the rotation and the translation
of the molecule. It uses a method to produce random
numbers that are used to rotate and translate the
molecule and during the time the range of these num-
bers gets less same as the Aquila when it attacks the
prey it closes the angle of the attack. Here, it is mimic
how the Aquila expands and decreases the space of
its circle. Then, use the generation of Aquila’s behav-
iors as a swarm of termite workers. considering each
method as a termite worker and dedicate each worker
to rotate and translate one specific sample molecule
from the dataset. And use a function that examines
each step of the transformation and it considers each
progress the same way when the foraging termites
emit the pheromones while digging underground.

Neural Network is used by finding the similar-
ity or the difference between the sample molecule
and the target molecule. After passing a molecule
into the three-dimensional grid, calculate each point’s
value in the grid. In this way it gets two vectors of



288 BAGHDAD SCIENCE JOURNAL 2025;22(1):280–296

numbers, one sample vector and one target vector.
After performing the Swarm Intelligence (Aquila and
Termite) steps and the methods of translation and
rotation to change the positions and the gesture of
sample molecules a specific number of times, it made
the molecule number (7) so similar to the target
molecule. The first step in our Neural Network is to
pass the sample molecule number (7) and the target
molecule to the Neural Network class. Then, calculate
the difference between each corresponding sector of
the vectors. In fact, each vector is divided into five
sectors (five neurons in Neural Networks).

The calculated value of the difference between each
sector considers the weight value. So, in this case,
here it is getting five weight values. The weights
values in this Neural Network are fixed. Each time
performing the algorithm of Aquila and Termite, the
class of Neural Network is recalled to pass one sam-
ple molecule after it has been translated and rotated
(transformed). After passing the sample molecule into
the three-dimensional grid and getting its vector of
numbers, it gets passed again into the Neural Net-
work’s class. The class divides the vector into five
sectors (this consider the first layer of the Neural
Network). In the second layer, it compares each sec-
tor of the sample molecule (sample vector) to the
target molecule’s sector (target vector’s sector). Then
it compares each result with the fixed corresponding
weight. Now, there are five results after performing
the second layer and if three of these results’ val-
ues are bigger than their corresponding weights, the
Neural Network’s class will find their summation and
considers it as the similarity between the two vectors.
The condition of passing three bigger numbers here is
considering the threshold of the network. The Fig. 1.
below shows a three-dimensional molecule in a three-
dimensional grid:

First, to find the quantitative structure-activity
for the target molecule, find the distance between
each atom in the molecule and the first point of the
grid by using Euclidean distance. Then do the same

Fig. 1. One molecule in a grid.

Fig. 2. Measuring the QSA for Target Molecule by Euclidean
Distance.

mechanism with all points of the grid and save the
results in a vector named TMVector (Target Molecule
Vector). The Fig. 2. below shows how to measure the
QSA for Target Molecule using Euclidean Distance:

After downloading the molecule from the particu-
lar file. Use a local loop and each cycle of the loop
represents dealing with one molecule. In the begin-
ning, translate (shift) the molecule in a particular
distance to the positive side of the grid to avoid
using negative numbers. Then translate and rotate
the molecule (transform) by particular dimensions to
make it more similar to the target molecule. Here,
it measures the quantitative structure-activity for the
first sample molecule and save it in the SMVector
(Sample Molecule Vector). Now, compare the sample
molecule with the target molecule using Manhattan
distance to measure the difference between them and
save the difference in the first room of an array called
the local array initiated before using the local loop
and it has the same loop’s length. In each loop cycle,
save the difference in the next room of the local array.
The Fig. 3. below shows how to measure the dif-
ference between two molecules using the Manhattan
distance:

After finishing the local loop’s cycles here gets an
array full of numbers and each number represents
the difference between one molecule of the data set
compared to the target molecule. To use the Aquila
algorithm, use another loop with particular cycles
called the Generation loop. The Generation loop holds
the local loop which represents one termite in colony.
In each cycle of the global loop, the array rear-
ranges in an ascending manner to arrange the sample
molecules in the same order and save it in an array
called DiffValArranged. At the same time, it saves
the index of the smaller difference in the local array
which is the index of the molecule in the data set in
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Fig. 3. Measuring the difference between target molecule and sam-
ple molecule using Manhattan distance.

Fig. 4. Rearrange the values in local array to DiffValArranged array.

the third array called the final array. After finishing
the global loop, the final array is check which is full of
indexes and find which index that frequent the most
(this considers foraging termites emit the pheromones

while digging underground). The most frequent index
is the index of the most similar molecule in the data
set comparing to the target molecule. The Fig. 4.
below shows how to rearrange the values in the local
array to DiffValArranged array:

Experiment

Data loading phase

A file named steroid has been used to save data
about the molecules information. It is a collection of
coordinates containing decimal positive and negative
numbers and it is arranged by placing three numbers
in each line to represent an atom. Three java classes
have been used to load the data from the steroid file.

The first class is named Molec Calculator. Its task
is to calculate how many molecules there are in the
file and it does so by using a method named (read)
creating three objects of three classes that have been
imported from the java library and they are (File,
File Input Stream, and Buffered Reader). It uses a
while loop to read lines from the file and it increases
the counter (molecule Count) by one when it reaches
the space line. Ultimately the method returns the
number of molecules in the file by using the vari-
able (moleculeCount). At the end of the method, the
molecule Count has been increased by one because
the object of the Buffered Reader class does not read
the last space in the file.

Here is a segment of a simple sample molecule
within the dataset, comprising a group of atoms.

The second class is named Atom Calculato. Its task
is to calculate how many atoms are there in the
file for each molecule and it does so by using a
method named (read) creating three objects of three
classes that have been imported from the java library
and they are (File, File Input Stream, and Buffered
Reader). At the beginning, an array of integer num-
bers named (atom Numbers) is get created to hold
atoms’ numbers. The length of the array is the same
as the molecule number in the file which has been

Atoms with values Atoms with values Atoms with values Atoms with values
(x, y, z) (x, y, z) (x, y, z) (x, y, z)

−4.9613 −3.282 1.0341 1.6684 1.6262 −1.708 2.9306 1.0507 −3.7533 1.2143 −2.2798 −0.7817
−2.6356 −2.5292 1.3053 1.861 0.1881 −1.2092 −3.3381 0.3008 −1.345 1.8226 −1.7812 0.8272
−1.4762 −1.834 0.645 3.2881 0.1936 −0.641 −2.7969 −1.3371 −1.8326 0.7268 0.3834 0.652
−0.2448 −2.3478 0.7521 4.0475 1.1486 −1.5906 −5.0735 −1.4247 −0.9018 −0.5578 −0.8753 −1.8356
0.9717 −1.7195 0.1333 2.9826 1.8199 −2.4972 −4.5163 −0.6493 0.6171 −0.9444 2.0074 −0.8647
0.7383 −0.2456 −0.2491 1.5984 2.639 −0.5398 −3.5147 −3.3397 −0.5033 −1.7211 1.2253 −2.2731
−0.6025 −0.1468 −1.0122 −2.031 0.526 0.9938 −5.299 −2.7675 1.7582 0.1926 2.6641 −2.9443
−1.7795 −0.548 −0.0879 3.306 3.259 −2.8074 −2.3304 −3.5268 1.6532 0.4493 0.9412 −3.378
−0.8172 1.2497 −1.649 4.3409 3.7841 −2.430 −2.9663 −1.9355 2.17 1.8487 −0.4836 −2.0809
0.3726 1.6562 −2.5452 2.304 4.0411 −3.6069 −0.1116 −3.277 1.303 3.7242 −0.8162 −0.6337
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obtained by the Molec Reader class. It uses a while
loop to read lines from the file and it increases the
counter (molecule Count) by one when it reaches the
space line and assigns a counter named (atom Coun)
to zero. if. . .else statement is used to check whether
it is a space or a new data line. When it is a data
line the program increases the counter (atom Coun)
by one each time. Ultimately the method returns an
array of integers that represent atoms’ numbers in
each molecule in the file by using the variable (atom
Numbers).

The third class is named data Reader. Its task is
to read molecules’ coordinates and save them into
an array of molecule types and each molecule is an
array of coordinates (atoms). It works by using a
method named (read) creating three objects of three
classes that have been imported from the java library
and they are (File, File Input Stream, and Buffered
Reader). It initializes two counters (molec Count and
atom Count) to be used inside the while loop which
read lines from the file. It initializes an array to save
molecules named Molecs Array with a length equal
to the number of molecules in the file. It initializes
another array to save atoms in each molecule in
the previous array and its length varies from one
molecule to another by initializing it periodically and
regularly inside the loop. The method uses an if. . .else
statement to check whether it is a space or a line of
data. It uses the split method to separate values and
the pars Double method to change the values from
String type into Double type and finally save it into a
coordinate type. Ultimately the class returns an array
named molec Array which is an array of molecules
and each molecule is full of atoms (coordinate types).

Representing phase (basic classes)

Molec3D: It is a class to represent three dimensional
molecule. It has a field side to define its properties
such as atom Number, atom Index, and an array of
Molec3DCoord. To be more specific, the Molec3D is
an array of Mol3DCoord class.

Mol3DCoord: It is a class to represent a three-
dimensional atom in the molecule. Its data field
contains x, y, and z variables to represent the three-
dimensional coordinate. It has a constructor to make
the object of coordinate and it has three parameters.
The most two important methods for this class are
distance To and power To. The first one (distance To)
is used to measure the distance between two coordi-
nates. In our software, it has been used to measure
the distance between the point of the grid and the
atoms’ coordinates of the molecule. In fact, it has been
used to measure the distances for all points of the
grid according to the molecule’s atoms. The second

method (power To) is used to measure the power of
the molecule atoms that affect the points of the grid.
So, it calculates the power for each point of the grid
according to the molecule’s atoms inside the grid and
it does so by dividing the distance by 10.

Mol3DGrid: it is a class to represent the grid used to
hold a molecule to measure the distances and powers
of its points according to the molecule’s atoms. It has
a data field with three variables xAxis, yAxis, and
zAxis. Also, it has a constructor to construct an object
to use through the software.

Operation phase

Operations: Class to hold methods that are used
to do operations on the molecule and they are listed
below:

change MtoArray: a method that receives one
molecule and changes it into an array of Mol3DCoord
(coordinates) to deal with its variable (x, y, and z).
It returns an array of three-dimensional coordinates.
translation: a method that receives one molecule and
three numbers (x, y, and z) to shift the molecule in
three dimensions. Ultimately, it returns the molecule
with new positions. Get Grid Power: a method that
receives an array of three-dimensional coordinates
which represents one molecule and an object of
Mol3DGrid. It calculates the distances between one
point and the molecule’s atoms. It obtains the power
of the point by dividing the summation of the dis-
tances by 10. When it mention the power of the point,
it means the Xray power that gets produced by the
molecule’s atoms. The method uses three loops to visit
each point in the grid and during that it calculates
the power of each point. It returns an array of dou-
bles types and each room in the array represents one
point’s power. Fig. 5 below explains how to calculate
points power inside cubic grid:

Fig. 5. Explains how the method calculate points power inside cubic
grid.
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Get Molec Difference: a method that receives two
arrays and each one holds powers of the grid’s points.
The first array represents the target molecule and
the second one represents the sample molecule. It
uses Euclidean distance to find the difference be-
tween two arrays. The method returns a double
value type which represents the difference between
two molecules. Get Centroid: a method that receives
an array of three-dimensional coordinates which
represents one molecule. Its task is to obtain the
centroid of the molecule. The method returns a three-
dimensional coordinate that represents the centroid
of the molecule.

The flowchart of software is explained below:

Results and discussion

Here, one experiment was conducted using the hy-
brid system and the results can be seen in Table 1
below:

Here you can see from the results in Table 1 that
sample molecule number (7) is the most similar
molecule to the target molecule because it has lowest
difference most of the time compared to the target
molecule. The first row in Table 1 represents the
generation of the termites. The second row represents
the values for translating and rotating the sample
molecules. The third row shows the values of the
difference between the target molecule and sample
molecules from number 0 to number 19 and GP (Grid

Start
Read Molecules from Dataset File

Change Molecules form Text Form into Java Readable Form 
Produce Values for Transla!on and Rota!on with range between -5 and +5 Depending on Aquila movement

Produce Genera!on of Termites to Transform MoleculesAnd call Neural Network class 
Calculate differences between each sample molecule compared to target molecule and compare results with fixed weights 
Perform Aquila method by reducing range of random values for rota!on and transla!on

Is Condi!on = true?

Check from List 1 to List n molecule indexes of firs valueThe most frequent index is the number of most similar sample molecule.

NO

Yes

End
Fig. 6. The steps of software algorithm.
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Table 1. Shows the results of performing one loop of the hybrid system.

Termites Generation Number: 0

Aquila movement x = −1.0 y = 0.0 z = −3.0 Rx = −2.0 Ry = −5.0 Rz = 3.0
(Molecules Transformation)

Difference between target molecule and sample molecules from number 0 sample molecule to number 10 sample
molecule calculated in G-P unit
3.17 3.11 3.7 3.24 3.37 3.14 3.05 2.72 2.99 3.33 3.86

Differences in Ascending Arrangement
2.72 2.99 3.05 3.11 3.14 3.17 3.24 3.33 3.37 3.7 3.86

(Molecule Number)
7 4 3 0 5 1 10 6 9 8 2

Table 2. Shows the results of performing one loop of the hybrid system.

Termites Generation Number: 29

Aquila movement x = 5.0 y = 0.0 z = 4.0 Rx = −4.0 Ry = −4.0 Rz = 0.0
(Molecules Transformation)

Difference between target molecule and sample molecules from number 0 sample molecule to number 10 sample
molecule calculated in G-P unit

29.76 24.5 19.67 18.16 18.14 22.54 28.72 19.5 30.73 29.76 30.1

Differences in Ascending Arrangement
18.14 18.16 19.5 19.67 22.54 24.5 28.72 29.76 29.76 30.1 30.73

(Molecule Number)
0 4 7 3 5 1 10 6 9 8 2

Power) represents the unit to measure the difference.
The fourth row shows the differences in ascending
arrangement and the last row shows the indexes of the
sample molecules depending on ascending arrange-
ment in fourth row. After performing the program for
hundred times, the results that show the most similar
molecule to the target one is molecule number (7).
When doing the steps to obtain the standard deviation
for the optimal molecule (number 7) depending on
its position compared to the other sample molecules’
positions in the arrangement array after performing
the program 30 times and got the standard deviation
with a value of (5.03).

In Table 2 sample molecule number (7) is the third
similar molecule compared to the target molecule and
that depends on the values of translation and rotation
that the Hybrid System has been used.

In one of our experiments, here used six parameters
to translate and rotate the sample molecules in the
data set. Three parameters for translation: (x = −1.0,
y = 0.0, z = −3.0) and three parameters for rotation:
(Rx = −2.0, Ry = −5.0, Rz = 3.0). and got the most
similar sample molecule compared to the target one
is molecule number (7) as shown in Chart 1. below:

When different parameters were used, different
results were appeared but still near. Six parame-
ters were used to translate and rotate the sample
molecules in the data set. Three parameters for
translation: (x = 5.0, y = 0.0, z = 4.0) and three
parameters for rotation: (Rx = −4.0, Ry = −4.0, Rz
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Chart 1. Ascending order of the differences between sample
molecules and target molecule.

= 0.0). find that the most similar sample molecule
compared to the target one is molecule number (0)
and sample molecule number (7) is the third most
similar sample molecule as shown in Chart 2. below:

To check the accuracy of our work first decided
to find the centroid of the target molecule and
the centroid of molecule number (7) which is the
most similar sample molecule to the target one.
Then translate both of them to the center of the
three-dimensional grid which is the point (6, 6,
6) manually and respectively without using our
Hybrid System. After that, found the difference
between them. After applying in above, got the
difference which is 1.92 GP and the difference
when use the Hybrid System was 2.72 GP. To find
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Chart 2. Ascending order of the differences between sample
molecules and target molecule.

the difference, apply the next steps: Percentage de-
crease = |2.72 – 1.92| / 2.72 = 0.8 / 2.72 =
0.29411764705882 = 29.411764705882% So the
accuracy is 70.588235294118%.

Our neural network has an input layer, a hidden
layer, and an output layer. Five neurons make up the
input and hidden layers. Each neuron in the input
layer finds the summation of the four values of the
sample vector. Each neuron in the hidden layer calcu-
lates the value of F, which is the result of subtracting x
from y, and then compares it to the fixed weight. The
counter will go up by one if the outcome is less than
the matching weight. Y1 represents the summation of
the first four values of the target vector. Y2 represents
the summation of the second four values of the target
vector and so on with y3, y4, and y5 respectively. The
neuron in the output layer finds the summation of f
values which are the result of the hidden layer and
passes it after determining that the counter register’s
value is greater than three, which is the threshold of
the output layer.

After finding that the molecule number (7) is so
similar to the target molecule during changing its
position and gesture. then used it to fix the values of
the weights in our Neural Network by subtracting the
values of the sample vector’s sectors (vector number
7) from the values of the target vector’s sectors. Now,
perform the algorithm of Swarm Intelligence (Aquila
and Termites) and during that, call the class of Neural
Network with each step to get the similarity of the dif-
ference between each molecule of sample molecules
and the target molecule. Below a sample of the results
obtained during the performance of the Integrated
System. (generation 498 and generation 499):

Termites Generation Number: 498
Aquila movement (Molecules Transformation) by:

x = 0.2 y = 0.12 z = 0.02Rx = −0.09 Ry = −0.09 Rz
= −0.08

Calling Neural Network on Each Molecule
Termites Generation Number: 499

Aquila movement (Molecules Transformation) by: x
= −0.08 y = −0.13 z = −0.18Rx = 0.12 Ry = −0.23
Rz = −0.04

Calling Neural Network on Each Molecule
The best similarity was achieved at Molecule

num: 4
MolecNO: 4: TransNO: 473 Diff: 0.23 TransVal: [x

= 0.0 y = 0.0 z = 0.0 Rx = 0.0 Ry = 0.0 Rz = 0.0]
From the result above it can be seen that using Neu-

ral Network integrated with Swarm Intelligence gives
us more precise similarities. By using the integrated
system for 100 times, got more than 90 percent of
the results denoted that molecule number 4 is the
most similar to the target molecule and that after
performing precise transformation on it (translation
and rotation) with very small poses in the three axes.
Because of our experiments above can say that the
accuracy for the integrated system is 90 percent.

Conclusion

The Meta-Heuristic mechanism was used in this
study. It covered how to locate the sample molecule in
a data collection that is most comparable to the target
molecule. The methodology was dependent on quan-
titative structure-activity relationships. To advance
the pharmaceutical sector, the molecular similarity
is sought after. Molecules have been measured using
the Euclidean distance steps on a three-dimensional
grid. Grid points have been employed to repre-
sent each molecule in space, and they were an
effective instrument for managing the fitness func-
tion’s development and Swarm Intelligence’s steps.
After measuring molecules in a three-dimensional
grid, the Manhattan distance was used to determine
how different the molecules were from one another.
The software code was written in the Java pro-
gramming language, and made use of its library of
programming classes to provide ways for represent-
ing three-dimensional molecules, three-dimensional
grids, translation, and rotation methods, as well as
numerous other methods to compare molecules. To
get the results, every method was entirely coded from
scratch. The study read a few articles that were ben-
eficial since they gave us experience dealing with
molecular similarity and swarm intelligence. Many
subjects have been discussed during the research such
as Molecules, Small Molecules, Drugs, Molecule Sim-
ilarity, Similarity Approaches, Molecular Descriptor,
Quantitative Structure-Activity Relationship, Quan-
tum Similarity Theory, Receptor and Ligand-based
approaches, Molecular Docking, Euclidean Distance,
Manhattan Distance, Swarm Intelligence, Ant colony
optimization, Particle swarm optimization, Artificial
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bee colony, Firefly algorithm, Cuckoo Search Opti-
mization, Aquila Optimizer, and Termites Colony.
The behaviors of the hybrid system of Aquila and
termites have been used to guide the operations
to discover the most similar molecule above. The
findings demonstrated that Swarm Intelligence (the
Hybrid System of Aquila and Termites) in addition to
Neural Network, a successful way to locate the most
similar molecule in the data set compared to the tar-
get molecule, is a viable response to the study issue.

Recommendations for future work

Future research in vector similarity computation
should explore ensemble approaches to combine
diverse deep learning models, optimizing for robust-
ness. Investigate dynamic learning rate strategies for
adaptive optimization, extending transfer learning to
leverage pre-trained models from various domains,
and handling temporal aspects in datasets. Enhance
explain ability techniques for interpreting neural
networks’ decisions in vector similarity, and assess ro-
bustness against adversarial attacks. Hybrid models,
combining deep learning with traditional techniques,
can offer a balanced approach. Tailor investigations
to application-specific needs such as content rec-
ommendation and anomaly detection. Integrate user
interactions for adaptive models. These strategies aim
to refine deep learning methods, advancing accu-
racy and robustness in vector similarity computation,
impacting diverse sectors like machine learning, rec-
ommendation systems, and data analysis.
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يئیزجلاھباشتلافاشتكلاةیبصعلاةكبشلاوبرسلاءاكذللماكتمماظن

2وجنیوكناكاھ،1مساجيماسةیداف

.ایكرت،لوبنطسإ،شابنتلأةعماج،تامولعملاایجولونكت،بوساحلاةسدنھمسق1
.ایكرت،لوبنطسإ،شابنتلأةعماج،ةرامعلاوةسدنھلاةیلك،بوساحلاةسدنھمسق2

ةصلاخلا

رھظملاھباشتمتائیزجلانابًایئامیكةدئاسلاةركفلاناثیحةیئایمیكلابناوجلانمدیدعلاربعةدیدعتابعشتھلوعساوموھفميئیزجلاھباشتلا

امك،ةینلادیصلاتارضحتسملاةعانصيفةعونتمدئاوفاھليئیزجلاھباشتلاباسحتاینقتنإف،ببسلااذھلو.ریثأتلايفةھباشتمصاصخاھل

فدھتسملاءيزجلاھبشتيتلاةنیعلاتائیزجدیدحتوھيئیزجلاھباشتلانمفدھلانا.تائیزجللطاشنلاولكیھلاتلااصتاقایسيفلاحلاوھ

ىلعامھمادختسامتناتللايعانطصلااءاكذلانمءزجةیبصعلاتاكبشلاوبرسلاءاكذدعی.يعانطصلااءاكذلاقرطباھریودتواھكیرحتدعب

تایكولسنیبجمدلامتثیحبرسلاءاكذنمنیجھماظنمادختسامتثحبلااذھيف.ةیئایمیكلاتاقیبطتلانمةعونتمةعومجميفعساوقاطن

ةدیدعلاقرطلانا.دحاوفدھتسمءيزجلاًقفوتانایبلاةعومجميفاھًباشترثكلأاةنیعلاءيزجىلعروثعللباقعلارئاطوضیبلاالمنلا

دعبنكلو%70.58ةبسنىلعانلصحدقوجئاتنلاةقدنمققحتللةیدیلقتةقیرطمادختسامتدقكلذبوةیبسنقرطربتعتھباشتلاةقدنمققحتلل

ةنراقمةنیعلاتائیزجنیبةیمكلاةقلاعلاداجیلاداعبلاايثلاثيكبشحولمادختسامت.%90ىلاةقدلاتدادزادقةبصعلاتاكبشلامادختسا

.مھنیبامیففلاتخلااوھباشتلالوصحللنتاھناملاوةیدیلقلااةفاسملاةلداعمقیبطتمتثیحفدھتسملاءيزجلاب

.ةیبصعلاتاكبشلا،ضیبلاالمنلا،باقعلارئاط،برسلاءاكذ،يئیزجلاھباشتلا:ةیحاتفملاتاملكلا
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