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Abstract

In this study, the quadratic 3-dimensional differential system is considered, in which the origin of the
coordinate becomes the Hopf equilibrium point. The existence and stability of limit cycles that emerge
from the Hopf point are being investigated. The Lyapunov coefficients connected to the Hopf point are
calculated using the projection method. First, four families of parameter conditions are driven by which the
guadratic 3-dimensional differential system can exhibit codimension three of the Hopf bifurcation. The
analytical proof of each parameter family of conditions is given by calculating the Lyapunov coefficients,
the vanishing of the first, sconed Lyapunov, and the non-zero of the third Lyapunov coefficients. The
explicit conditions are presented for the existence and stability of three limit cycles arising from each family
of Hopf bifurcations. The output of existence displays a stable (unstable) Hopf point, accompanied by the
emergence of two stable (unstable) limit cycles alongside one unstable (stable) limit cycle in the
neighborhood of the unstable (stable) origin of the coordinated 3-dimensional quadratic system. In addition,
the outcome is utilized for exploring the limit cycles of the n-scroll chaotic attractor system, which has
many practical uses, including secure communication, encryption, random number generation, and
autonomous mobile robots. The conditions are derived under which the origin point of this system becomes
the Hopf point, and three limit cycles can exist around the Hopf point. Finally, the numerical demonstrations
show that the system undergoes a supercritical Hopf bifurcation, resulting in two stable and one unstable
limit cycle. Furthermore, all results are verified.

Keywords: Hopf bifurcation, Limit cycles, Lyapunov coefficient, n-scroll chaotic attractors, Quadratic
3-dimensional differential systems.

Introduction

The number of limit cycles that a particular  systems. The number of limit cycles in R? is finite -
differential system can have is one of the significant 3. For R™, n > 3, the situations are vastly different.
challenges in the qualitative theory of differential Determining the number of limit cycles in the
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guadratic 3-dimensional differential system is
challenging. Some quadratic vector fields in R3 have
an unlimited number of limit cycles*. The dynamic
richness of quadratic 3-dimensional differential
systems makes them incredibly valuable in various
fields, including cryptography, image encryption,
non-linear control systems, signal processing, and
time series prediction. The Liu system, the Lorenz
system, the Rossler system, the Chen system, and the
Rikitake system are all examples of quadratic
systems in R3.

The analytical solution to the quadratic 3-
dimensional differential system is elusive®.

However, several alternative approaches and areas of
study can be explored: numerical methods®,
computer simulations’, and qualitative analysis. It
can gain insights into the system's behavior through
qualitative analysis. The study involves analyzing
the qualitative properties of solutions, such as
equilibrium point stability and limit cycle existence.

For this purpose, that is, the search for analytical
results that give information about the existence and
location of limit cycles, this quadratic three-
dimensional first-order differential system will be
studied.

x(t) = Ax(t) — puy () + ayx2(t) + ax(®)y(t) + azx(t)z(t) + ayy?(t) + asy(t)z(t) + agz?(t),
y(t) = px(t) + Ay(t) + by (y2(t) — x%(t)) + byx(D)y(t) + bax(£)z(t) + bsy(t)z(t) + bez*(t), 1
Z(t) = az(t) + ¢ x%(t) + cx()y(t) + c3x(t)z(t) + cay?(t) + csy(t)z(t) + cgz?(t),

where a;, b;,¢;, fori =1..6, A, a and u > 0 are
real parameters, and x(t),y(t),z(t) are state
variables, for simplicity it written in x, y, and z.

Various methodologies, including the classical
projection method, computation of singular point
guantities, and averaging methods, investigate limit
cycles emanating from Hopf points. Some
researchers have undertaken analytical studies of
guadratic differential systems. They use the
projection method to calculate Lyapunov
coefficients related to Hopf points, focusing on
specific systems with two or three limit cycles and
analyzing their stability®®. Others have explored
limit cycles via singular quantities (focal values),
providing a method to identify more limit cycles
without addressing their stability’®. The Averaging
method represents another approach to analytically
studying limit cycles, although it presents challenges
in calculating high zeros in equations®. In contrast,
some researchers opt for a numerical exploration of
limit cycles, leveraging this strategy to uncover more
limit cycles'**?,

In this note, the projection method is used to study
and analyze the limit cycles related to the Hopf point.
This method allowed us to calculate the first three
Lyapunov coefficients, and in the neighborhood of
Hopf point, granted the existence of three limit
cycles. Our result deals with general differential

systems of degree 2, which in this form were not
considered before. The four families of parameter
conditions drive the existence of three limit cycles.
Our system and conditions differ from particular
systems in previous studies®!2. Moreover, the
stability of limit cycles is investigated. All results in
this study were verified and numerically studied by
the Maplesoft program.

The present research is structured in the following
manner. The concept of Hopf bifurcation is
elucidated by using the projection technique. The
definition and Lyapunov coefficients have been
given in this paper. The main result of our
investigation has been documented and verified. In
the subsequent part, The quadratic differential
system that encompasses n-scroll chaotic attractors
is examined, serving as an illustrative illustration of
the main outcome. The main result of our study was
used to make estimations concerning the presence
and stability of the three limit cycles associated with
the origin Hopf point. The numerical simulations are
carried out using precise parameter values to validate
and demonstrate the analytical findings.

Page | 2971


https://doi.org/10.21123/bsj.2024.9306
https://doi.org/10.21123/bsj.2024.9306

2024, 21(9): 2970-2983
https://doi.org/10.21123/bsj.2024.9306
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

g

Baghdad Science Journal

Materials and Methods
Review on Hopf bifurcation

This section provides a comprehensive overview of
the projection method®®. This method is used to
compute the first and second Lyapunov coefficients
related to Hopf bifurcations. This method was
additionally employed to compute the third and
fourth Lyapunov coefficients,

Consider the following general differential equation,
X =f(X,06). 2

Suppose that f is a class of C* € R3 x R™, where
vector X € R3 denotes phase variables and the vector
& € R™ represents control parameters. Suppose X =
X, is an equilibrium point of system 2 at § = &,.
Moving the equilibrium X, to the origin of the
coordinates by the linear change of the variable X —
Xy Also, by X, it expresses

F(X) = f(X,6), 3
as
F(X) = AX + %B(X,X) +%C(X,X,X)
+%D(X,X,X,X) + oo,
where A = fy(0,6,) and fori =1, 2, 3,

Bi(X, Y)
3
9% Fi(§)
- f-—laflf=0 XYy, C;(X,Y,7)
=l
9% Fi(&)
7 o5 le=o X Y Zy,
j,k,l:la $j0&, 08

are two multilinear functions. Suppose that at
equilibrium (0, 6,), A has an eigenvalue A, # 0 with
a pair of complex eigenvalues on the imaginary axis:
Az3 = tiwg, (wo > 0), and the eigenvalues 4, 3 are
the only eigenvalues with Re(1) = 0. Assuming that
T€ is the generalized eigenspace of A that relates to
A23. Let p, and g be vectors in €3 in a way that

Aq =iweq, Ap = —iwgp, (p.q) =1, 4

where AT is the transposed of the matrix A. Any
vector y € T could be stated as y = wqg + w g, in

which w = (p,y) € C and w is the conjugate of w.
By using an immersion of the form X = H(w, w), it
is possible to parameterize the 2-dimensional center
manifold related to the eigenvalues A, 3 by w and w,
where H: C —» R3 has a Taylor series of the form

_ . 1 -
H(w,w) = wq +wq + Z mhjkwfwk
2 jtks7?T

+0(lwl®),

with hj, € €3 and hy, = hy,;. Substituting the above
expression into Eg. 2, the following differential
equation was obtained

H,w' + H,w' = F(H(w,W)), 5

in which F is expressed by Eq. 3. By solving the
system of linear equations described by the
coefficients in Eq. 5, the complex vectors h;; are
produced, taking the coefficients F into
consideration, so that Eqg. 5, on the chart w for a
central manifold, writes as follows:

. 1 1
w = iwgw + 3 Gzw lw|? + - G32w lw|* +

1
mG43W|W|6+0(|W|8), 6

with G;11); € C. The first, second, and third
Lyapunov coefficient [, [,, [3 can be written as

1 1 1
ll =ERerl, l2 =ER3632, l3 =mReG43.
7

The explicit expressions for the Lyapunov
coefficients can be found in Kuznetsov's book and
Sotomayor et al. research®14,

A Hopf point of codimension 1 is an equilibrium
point (X, 8) such that the linear part of the vector
field f has eigenvalues 1, = 2 and A3 = A with 1 =
A(8) = Re(A) +ilm(1) Re(A) =6, =0,Im(A) =
wo > 0, the other eigenvalue A, # 0 and the first
Lyapunov coefficient, [; (6,) is different from zero.
A transversal Hopf point is a Hopf point of
codimension one for which the complex eigenvalues,
depending on the parameters, cross the imaginary
axis with a non-zero derivative. In a neighborhood of
a transversal Hopf point with [; # 0 the dynamic
behavior of the system 2, reduced to the family of
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parameter-dependent continuations of the center
manifold, is orbitally topologically equivalent to the
following complex normal form w' = (§,+
iwg)w + Liw|w|?, where w € C; &y, wg, and I, are
real functions having derivatives of arbitrary higher
order. As [; <0 (ly > 0) one family of stable
(unstable) limit cycles can be found on the center
manifold and its continuation, shrinking to the Hopf
point.

A Hopf point of codimension 2 is a Hopf point where
l; vanishes. It is called transversal if 5, = 0 and
[, =0 have transversal intersections. In a
neighborhood of a transversal Hopf point of
codimension 2 with [, # 0 the dynamic behavior of
the system 2, reduced to the family of parameter-
dependent continuations of the center manifold, is
orbitally topologically equivalent to w' = (8, +
iwg)w + t,w|w|? + Lw|w|*, where §, and 7, are
unfolding parameters.

A Hopf point of codimension 3 is a Hopf point of
codimension 2, where [, = 0. It is called transversal
if 6,0=0,l;,=0 and [, =0 have transversal
intersections. In a neighborhood of a transversal
Hopf point of codimension 3 with I3 # 0 the

dynamic behavior of the system 2, reduced to the
family of parameter-dependent continuations of the
center manifold, is orbitally topologically equivalent
to w' = (8y + iwg)w + T w|w|? + Tow|w|* +
Iswlw|®, where §,7; and 7, are unfolding
parameters. The bifurcation diagrams for I3 # 0 can
be found in Takens's research®

Main results
First, take into consideration
H={Aua)ER>A1=21,=0,u>0,a<0}.

System 1 undergoes Hopf bifurcation at the origin
0(0,0,0) if the conditions in H hold. When 1 = 0,
the origin of system 1 is a Hopf point with two
purely imaginary complex eigenvalues +iu and non-
zero eigenvalue a < 0. The classical projection
method calculates the Lyapunov coefficients related
to the Hopf point. This helps us ensure that, under
certain parameter conditions, the system 1 has three
limit cycles by examining its third Lyapunov
coefficient.

Now, consider the following families of parameters
of the system 1:

Hl ={a4 = —Qaq,C = 0,C2 = 0,C4_ = 0},

b,
a,=—,a3 =0,a, = —a4,a
H2={1 543 4 1,45

1= 0,C3

2

= _b3,a6 = 0,b4 =

=0,c4=0,c5=0

22 py =0,b =0
2' 5 — Y, Ug — l}’

b
H _{al :_2,a2 = 2b4,,a3 = O,a4, = _al,as = _b3,b3 = O,bs = 0,}
3 = )

Cl = C4,C2 = O,C3 = bZ'CS = 2b4,

The following is the main result, which gives the
Lyapunov coefficient for system 1:

Theorem 1: Consider system 1 with parameter
values in #. Then the origin O is Hopf point. If A #
A, then system 1 features a transversal Hopf point at
the origin. Moreover,

(@) Consider the conditions in H;. Then, the first
and second Lyapunov vanishes. Moreover,

= 0,a3 = O,as = 0,a6 = 0,b1 = O,bz = 2a4,b3 = 0,b4 = O,bs = 0,}
¢4 =0,c3 =a4,c4 =0,c5 =0

the third Lyapunov coefficient at the origin
is given by
_ Hy1Hyp 5
l3(H,) = 3456 u 8
(b) Consider the conditions in H,. Then, the first
and second Lyapunov vanishes. Moreover,

the third Lyapunov coefficient at the origin
is given by
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l3(H)
bsci (a3 + b3 )Hy,
~ 48ap(a? + 9u?)(a? + 4u?)(a? + u?)’

(c) Consider the conditions in H;. Then, the first
and second Lyapunov vanishes. Moreover,
the third Lyapunov coefficient at the origin
is given by

2¢3Hyq
B = et ) 10

(d) Consider the conditions in H,. Then, the first
and second Lyapunov vanishes. Moreover,
the third Lyapunov coefficient at the origin
is given by

13(Hy)

2
becz Hyq

= 11
192u3(a? +9u2)(a? + 4u?)?(a? + u?)

If I3y, # 0fori = 1...4,thenthere exist three limit

cycles near the equilibrium point at the origin.
Where, Hy4, H1,, H,1, H31, and H,4 are given below.

Hy, = (4a? — 4a,b, + a2 — 4ayb, + b3 + 4b3),

H12 = _( 4'a1a2 + 16(1 b4_ + 12a1b2b4 + a1a2

—3aja,b? —12a,a,b?
— 16a,b;} + adb,
+ 3a2b,b, — a,b3 — b3b,
— 4byb?),
Hy; = (a*bs + 6uadcs — p?a’bs + 18u3acy
—8u*by),
Hz; = (a(asbgcs + aghycs)
+ u(asasc — agey — bybece
- b§C4) )l
Hy = (20 + 138a*y? + 904a?y’
+ 1440u8 a3
+ (=21a3u3 — 69au®)cscra,

+ (9ad3ud® + 57au5)b6022).

Proof of Theorem 1: For parameters in H, the
eigenvalues of the Jacobian matrix of system 1 at the
origin are a <0, +wgyi, where wy = > 0. The
eigenvectors g and p defined in Eq 4 are

= (i,1,0) . (i ! o)
p - ll ] ] q - 21 21 .
To verify the transversal condition of the Hopf

bifurcation. Consider system 1, which is dependent

on parameter A. { = {(A) denotes the real part of the
pair of complex eigenvalues at the critical parameter
A = A, = 0. Which satisfies

dA
() =Re(p.(g7) =120
where A denotes the Jacobian matrix of system 1 at
the origin. Consequently, the transversal condition
for the Hopf point holds. Moreover, each case of
Theorem 1 is proved independently.

(@) Consider the parameters in the set H;, The
system's bilinear vector function is computed as
follows.

B(x,y) = (Qayy1 + azy, + azys)x;
+ (azy1 — 241y, + asyz)x;
+ (azy;, + asy, + 2a¢y3)xs,

(=2bsy1 + byy, + b3ys)x,
+ (by1 + 2bsy; + bsys)x,
+ (b3y1 + bsy, + 2bgy3)xs,
C3Y3X1 t C5Y3X;
+ (c3y1 + Cs5Y2 + 2¢6Y3)%3).

Then, the complex vectors are given by

hy, = (0,0,0),

’

2a, + 4iay + ib; + 2b, 2b, —ia, — 4iby + 2a4
hzo = ( ) O) )

61 6u
h21 48 Q.2 (8a1b4— 2a2b2
+i(—4a? — a3+ b3 +4b2),
4a? + a5 — b% — 4bg
+i(8ayb, — 2ayb,),  0),
h,, = (0,0,0),
1 s : -
hso = 32—112(31( 3iay + 2ib, — 6a; — by) (ia,

+ 2ib, — 2a, — b,), (3ia, + 6ib,
—6a; —3by)(ia, + 6iby — 2a,4
- 3b2)'0)'

hs1 = 3553 ((16la1 + (—60ib, + 8a, +

56b,)a? + (4ia% + (—88ib, — 44by)a, +

12ib% + 16ib2 + 16b,b,) a, + 2a3 + (7ib, —
30b,) a3 + (8ibyb, + 2b2 + 24b2)a, + 7(b2 +
4b2)(byi + 2b4)), 56a3 + (—28ia, — 16ib, +
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24by)a? + (14a% + (—8ib, + 16by)a, +
88ib,b, — 30b2 + 56b%)a, — 7ia3 + (—12ib, +
2by)a3 + (—=7ib3 + 60ib7 — 44b,b,)a, — 4(b3 +

2b2)( 2ib, — by), 0).

Now, the first and second Lyapounv coefficients
vanish. l;(H;) = 0, l,(H;) = 0, respectively. With
more calculations, it obtained that

hs, =

1 .
2304, (— h321,1h321 ,0),

h321 = (9261% - 20a1b2 + 23a% — 20a2b4 + 23b22

e 1
407 180u3

+92b%)(2a,b, + 4ia? + ia3
— ib? — 8a,b, — 4ib?),

(448ia3

+ (468ib, + 656a, + 944b,) a?
+ (—320ia3

+ (=976ib, + 484b,)a,

+ 168ib2 — 656ib? + 664b,b,)a,
—52a3 + (—125ib, — 252b,)a?
+ (—316ib,b, + 80b2
—312b3)a, + 13ib3 — 164ib,b2
+ 80b%b, — 112b3,112a3

+ (—164ia, — 656ib,

+ 312b,)a?

+ (—80d3

+ (—316ib, — 664b,) a,
—976ib,by + 252b% — 944b%)a,
+ 13ia3 + (168ib, — 80b,) a3

+ (—125ib% + 468ib2

— 484b,b,) a, — 320ib3b,

+ 448ib3 + 52b3 — 656b,b2 ,0),

hy; = (h411,h412'0),

Ry = ————
41l 1280;14(

624iat

+ (—560ib, + 816a,
+1920b,) a3

+ (—96&ia3

+ (—1968ib, — 1168b,)a,
—320ib% + 608ibZ
—1072b, b,) a?

+ (204a3

+ (556ib, — 912b,) a3

+ (—128ib,b, — 84b2

— 848b2)a, + 140ib3

+ 592ib,bZ + 336b%b,

+ 1408b3)a, — 63ia;

+ (204ib, + 56b,)a>

+ (10ib% + 384ib2

— 140b4b,)a3

+ (—212ib%b, — 816ib; + 88b3
+ 336b,b3)a,

+ (41ib% — 132ib2

+ 148b,b,) (b2 + 4b? )

h =;((528a4‘
412 = T80, 1

+ (=592ia, — 1408ib,

+ 816b,)a3

+ (—32d?

+ (—336ib, — 592b,)a,

+ 848ib,b, — 384b% — 608b%)ai
+ (—148ia3

+ (—336ib, + 212b,) a?

+ (140ib% + 1072ib2

+ 128b4b,)a, + 912ibZb,
—1920ib3 — 204b3

+ 1968b,b2)a, — 41a;

+ (—88ib, — 140by)a3

+ (84ib,b, — 10b2 + &320b2) a3
+ (—56ib3 + 1168ib, b3

— 556b2b, + 560b3)a,

— (204 ib,b, — 63b2

+156b2) (b2 + 4b£))>,

hyy = (h421'h422:0):
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1
— : 5
h421 - 17280‘[15 <1088la1 104‘64‘0,5

Rupy = ———=
4227 17280u5

+ (=9520ib, — 2912a,

—3360b,)af

+ (544ia3

+ (—19936ib, — 3056b,)a,

+ 3984ib7 — 18560ib?

+ 7200b,b,)a3

+ (—1456a3

+ (224ib, — 4736b,) a3

+ (17104ibyb, + 1920b3

+ 11744b3)a, — 1696ib3

+ 896ib, b3 + 4848b3b,

+20928b3)a?

+ (68ia‘2*

+ (—4984ib, — 764b,) a3

+ (—&1124ib2 + 3840ib?

+ 3368b,b,)a?

+ (—5368ibsb, — 6112ib3

—2492b3 — 10736b,b3)a,
182i

+ 536 (b2 + 4b2) (ibg ~ 7

+ 91;47b2 ) ) a;, —182a3

+ (651ib, — 974b,)a5

+ (36ib,b, + 284b3

+3720b%) a3

+ (438ib3 — 168ib, b3

—1184bZb, — 5120b3) a3

b;

17b2

2 2 .
+900 (b2 + 4b2) <lb2b4 T

N 52b?

225 ) %2

+219 (ibz
218b,

+ T) (b3 + 4b)? )

+ (—3504ia, + 5824ib,
+ 832b,)af

+ (5232a3

+ (—=3600ib, + 288b,) a,
+ 6112ib,by — 5120b3
+20928b%)a3

+ (—-1752ia3

+ (—688ib, + 344b,) a3
+ (168ib2 — 896ib2
—10736b,b,) a, — 3840ib2b,
+ 18560 ib3 + 3720b3

+ 11744b,b3)a?

+ ( 654a;

+ (=900ib, + 72by)a3
+ (5368ib,b, — 1184b2
+ 4848b2) a3

+ (—36ib3 — 17104ib,b2
+ 3368b2b, + 7200b3)a,

+ 4984(b3 + 4b3) (ib2b4

487b2  15b2 J10ias
2492 89 ) |™ ta

+ (=536ib, + 34b,)a5

+ (—438ibZ + 1696ibZ
— 2492b,b,)a3

+ (1124ib3b, — 3984ib3
+ 284 b3 + 1920b,b%) a3

—651(b22+4b£)(ib§—

764b4b2)
651 )%

3401
93

bi

91b2>

_ 2 232 [
68(b2 + 4b2) (Lb4+ =

h33 = (h331, h332,0),
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1 . .
h331 = W(Zlbzs + (10[(11 - az - b4)b§
+ (16ib2 + ( 2ia, — 28a,)b,
- 32(11(12)1)23
+ (—8b3 + (72ia;, — 36a,)b?
+ (—40ia,a, + 128a? — 32a2)b,
— (10ia; + ay)(4a? + a%))bz2
+ ( 32ib} + (8ia, — 112a,)&b3
+ (160ia? — 40ia3 + 128a,a,)b;

1
—72(iay, — 2a,) <a% + Za%) by

1 2
—32i (a% +—a§> )b2
4
1
+128 (—gbff + (ia; — ay)b3
5.,
+Zlazb4a1

1
+(a% +Za§)(ia1 + a,)b,
1 1 .\*
+§(a% +Za§) >b4),

1
—(16a§
u

+ (32ia, + 128ib, + 128b;,)a}
+ (8a% + (8ib, + 112b,) a,
+ 160ib,by)a3
+ (16ia3 + (72ib, + 36b,) a3
+ (—40ib3 + 160ibg
- 128b4b2)a2
+32 (b3 + 4b3)(ib, — by)) a3
+ (a3 + (2ib, + 28by)a3
+ (—40ib,b, + 32b% — 128b2)a3
— 18 (b2 + 4b2)(ib, + 2by)a,
— (b7 + 4b5)»ay

1
+2 (iag + (51'194 + Ebz) a3
+ 16b,ab,

1

= 5( by = 5b, ) (3 + 4bD)ay
i+ 4bz)2) az).

The complex number G,5 is given by

Gas = —23041;0;15 (—i (iay = 2iby — 2a; + by)(ia
— 2iby + 2a, — b,)(13816a?b3
+ 2320a,bsb2 + 2320a,b,a3
+39232a,b,b2 + 39232a,b,a?
—9712b3 + 17b3 + 17a3

— 2360b2bZ + 7312a,b3

+ 7312a3b, + 19264a,b3

+ 19264a3b, — 2360a?a3
—9712af + 11520ia?b,b,

— 2880ia,a,b? — 11520ia,a,b?
+ 2880ia2b,b, + 32352b,a,a,b,
+20512b2a? + 13816b%a3

— 2462a3b% + 3840ia3a,

+ 15360ia3b, + 960ia,a3
—15360ia,b3 + 960ia3b,
—960ia,b3 — 960ib3b,

- 3840ib2b2)).

According to the above computations and the
analysis, the third Lyapunov coefficient [3(H;) as
follows:

H11H12

l3(H1) = 3456‘“5

= W (4(1% - 4a1b2 + a% - 4a2b4

+ b2 + 4b2)(—4a3a, — 16a3h,
—12a?b,b, — a,a3 + 3a,a,b?
+ 12a,a,b3 + 16a,b3 — a3b,
—3a2byb, + a,b3 + b3b,

+ 4b,b3). 12

If [3(H,) # 0, then, at the origin, system 1
possesses a transversal Hopf point with codimension
three. The sign of the numerator in Eqg. 12 determines
the sign of the third Lyapunov coefficient I3 (H,).
Therefore, if H;,H;, > 0then I5(H;) > 0, the Hopf
point I s unstable (weak repelling focus) at the origin,
and for each 4 < 4., close to 4., three limit cycles
exist, two unstable and one stable near the origin
equilibrium point. If Hy;H,, < 0 then I3(H,) <0,
the Hopf point is stable (weak attractor focus) at the
origin, and for each 1 > A, close to A, three limit
cycles exist, two stable and one unstable, near the
origin equilibrium point. Theorem 1 case (a) has
been successfully proved.
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(b) Consider the parameter conditions in the set H,.
The bilinear vector function is computed as follows:

B(x,y) = ((boy1 + az2)x;
+ (azy1 — by, — b3ys)x;
— b3y,x3, (—azy; + byy,
+ b3y3)xy + (by1 + azy;)x,
+ b3y X3, C2Y2%1 + €Y1 %
+ 2¢6Y3%3).

bszc3(a3 + b3)Hy,

l3(H2) =

48apu?(a? +9u?)(a? + 4u?)(a? + u?)
_ bsc3(ag + b3)(a*bs + 6uadcs — p*a’bs + 18uace — 8u*bs)

In the same way, as described in case (a), the third
Lyapunov coefficient is obtained as follows:

13

48apu?(a? +9u?)(a? + 4u?)(a? + u?)

In case l3(H,) # 0, transversality of codimension
three of a Hopf point at the origin for system 1 hold.
For c, # 0, the sign of the third Lyapunov
coefficient Eq. 13, is opposite to the sign of b3 H,;.
If b;H,; < 0 then I3(H,) > 0. The Hopf point is
unstable and for A < A, close to 4., three limit cycles
exist: two unstable and one stable near the origin
equilibrium point. If b3H,; > 0, then [3(H;) < 0.
The Hopf point is stable, and for 1 > A, close to 4.,
three limit cycles exist: two stable and one unstable
near the origin equilibrium point.

2c3Hs3,

_2¢i(a(ashbecs + aghace) + p(asagcs — agcy — bybscs — bics) )

(c) Consider the parameter in the set Hs. The bilinear
vector function is written as follows:

B(x,y) = (—2(asy1 — bsy2)x4
+ 2(byy1 + asy2)x;
+ 2a6x3Y3, —2(bsyy + asy2)x;
— 2(asy; — byy2)x,
+ 2bgx3y3, —2(—Cay1 + a4y3)xq
+ 2(cayz + bsys)x,
—2(asy; — bsy, — cy3)x3).

In the same way, as described in case (a), the third
Lyapunov coefficient is given by

14

fs(H3) = adu(a? +p2)

Since a < 0, the opposite of the sign of c, Hz;
determines the sign of the third Lyapunov
coefficient, given by Eq. 14. If ¢,H3; <0, then
[5(H3) > 0. The Hopf point is unstable and for 2 <
A close to A, three limit cycles exist: one stable and
two unstable near the origin equilibrium point. If
cyHz; >0, then [3(H3) < 0. The Hopf point is
stable, and for 1 > A, close to A, three limit cycles
exist: one unstable and two stable, near the origin
equilibrium point.

(d) Consider the parameter conditions in the set H,.
The bilinear vector function is written as follows:

B(x,y) = (2a4%3Y2,2(asx1y, + asX2y1
+ bex3y3), C2(V2 + asy3)x;
+ cxy1 + (a4y1 + 2¢6Y3)x3).

adu(a? + p?)

In the same way, as described in case (a), the third
Lyapunov coefficient obtained as follows:

becs Hay
192u3(a? +9u?)(a? + 4u?)?(a? + u?)
= becs ((2a6
192u3(a? + 9u?)(a? + 4u?)?(a? + u?)
+ 138a*u? + 904a?u* + 1440u°)a3
+ (=21a3\mu3 — 69au®)cgcra,
+ (9a3u® + 57au5)b6022). 15

l3(Hy) =

For c, # 0, the sign of the third Lyapunov
coefficient, given by Eq. 15, is determined by the
sign of bgHyq. If bgHyq > 0, then I3(H,) > 0. The
Hopf point is unstable and for A < A, close to 4.,
three limit cycles exist: one stable and two unstable
near the origin equilibrium point. If bgH,, < 0, then
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l3(H,) < 0. The Hopf point is stable, and for 4 > A,
close to A, there exist three limit cycles: one
unstable and two stable, near the origin equilibrium
point 0. The proof of Theorem 1 is now finished.

Limit Cycles of n-Scroll Chaotic Attractor

This section presents a specific differential system as
an example of Theorem 1. This theorem is used to
examine and analyze both the Hopf bifurcation and
the limit cycle of the system. Additionally, numerical
simulations are provided to validate our findings.

The existence of differential systems capable of
producing n-scroll chaotic attractors is a significant
open topic with a challenging solution®. n-scroll
chaotic attractors have been extensively studied
throughout history?’. Compared to double-scroll
oscillators like Lorenz, they offer richer dynamics
and a larger maximum Lyapunov exponent!®19, This
type of system has many practical uses, such as
secure communications?, encryption?-?, random

number generating?, autonomous mobile robots?,
and other technical fields.

Now, consider the simplest family of systems with n-
scroll chaotic attractor?®>. Which is described as
follows:

X=nX+nY +n3Z+ngYZ

Y = mX + myY + myZ + mgXZ + moYZ,
Z=rX+1Y+1r3Z+1,XY +1eXZ +15YZ.

It set 14 parameters, and tweaking one resulted in an
uncommon three-scroll odd attractor?®. This system
is a subsystem of system 1. Under certain conditions,
it has been shown that system 16 undergoes Hopf
bifurcation and gives rise to three limit cycles
emerging from the Hopf equilibrium point. The
following theorem describes the third Lyapunov
coefficient associated with a Hopf equilibrium point
of the system 16.

Theorem 2: Consider system 16 with a family of
conditions

u? mary(a — 1) mgry (M3ngry + mou?)
K = nlzl,n2=0,n3=—r—1,m1=#—2,m2=a,m8= T 19
r,=0,1r=A41r=0,1=0
where = ./[—N37{ >0, a =m, <0, and 1, # . _ ngmgr{ b T b=
0. Then, for A = 0 the origin is a Hopf equilibrium S TE R T o S
point. Moreover, the third Lyapunov coefficient is 1 (M3ngry + mou?)
given by €5 = 3 :

2 44,8 _ 124
_ M3noTy rg(m3ngry — u “rg)

- . 1
Ly 3456,70 %0 7

Proof of Theorem 2: Consider the conditions in the
set K. Use the following linear change of variables,
msnm;

&1
—X+Z, z=—Y.
u u

x =X, y=-

Then, system 16 becomes

X=Ax—py+a,xy+asyz
y=ux+Aiy+byxy, 18
Z=az+c5yz,

where coefficients are given by

It noted that when A = 0, the origin of the coordinate
of the system 18 is a Hopf point with eigenvalues a
and +iu. Now, if a =m, <0, and u = .,/—nsrn,
where nyr; < 0, then the coefficients of the system
18 satisfy the family of parameter conditions Hj.
Thus, by Theorem 1 case (a), the first and second
Lyapunov coefficients are vanish. From Eq. 12, the
third Lyapunov coefficient is given by Eq. 17.

If hzrs“z;to, for

NoTy

rn+0, m #0 and

r,(mym3) < 0, then, take into consideration of the
following sets

Sl = {Tsng > 0, ms € (_h, 0) U (h, OO)},
Sz = {Tsng < 0, ms
€ (—oo,h) U (0,—h)},

Page | 2979


https://doi.org/10.21123/bsj.2024.9306
https://doi.org/10.21123/bsj.2024.9306

2024, 21(9): 2970-2983
https://doi.org/10.21123/bsj.2024.9306
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

A

Baghdad Science Journal

T, = {rgng > 0,m3 € (—oo,—h) U (0,h)},
T,
= {rgng < 0,m4
€ (h,0) U (—h,»)}.

When the conditions S, or S, are satisfied. It follows
that, I3 > 0, then the origin is a weak repelling focus
for the flow of the system 16 restricted to the
attracting center manifold. Consequently, for 1 < 0,
three limit cycles exist, one stable and two unstable,
for appropriate values of the parameters. On the other
hand, when the conditions T; or T, holds. It follows
that, I3 < 0, then the origin is a weak attracting focus
for the flow of the system 16 restricted to the
attracting center manifold. Consequently, for 4 > 0,
three limit cycles exist, one unstable and two stable,
near the Hopf equilibrium for appropriate values of
the parameters.

Now, Let us use a humerical example to illustrate a
system 16. Consider the values of the following
parameters

1

n3 = E,ng = _1,m1 = _8,m2 = _2,m3

= _2,m8 = —16,7‘1 = —2,7‘8
:_4,n2 =T2 =T‘7=T9=0,

and n,; = r3 = A. According to Theorem 2, For 1 =
0, the origin of system 16 is the Hopf point with a
pair of purely imaginary eigenvalues +i and the
other @ = —2. Then, to calculate the third Lyapunov,
the following values were obtained

_ <i 1 0>
q - 2 ;2 y y
h11 = (010’0)' hZO

= (—2.6667 — 0.66667i,—1.3333

p = (l’ 110)1

+1.3333i,0),
20i
Gy = _T' L =0,
h,, = (=1.3333 —i,1 — 1.3333i,0),  h,,
= (0;010)1 h30

= (12 — 16.5i,—1.5 — 12i,0),
h_31 = (—4.4444 — 7.7778i,—2.2222 + 15.556i,0),

1700i
Gsp = — 9 '’ l,=0,

hz, = (=51.111 — 38.333i,38.333 — 51.111i, 0),

hso = (91.022 + 173.16i,95.289 + 51.911i, 0),
hsq = (124.8 — 185.4i,—126.6 — 163.2i,0),
h_42 = (206.46i,—88.77 + 700.09i, 0),

hs3 = (71.111 + 213.33i,—142.22 — 426.67i,0),

764721i

Gy3 = —5120 —
43 9

Then, the third Lyapunov coefficient is I3 =
—35.556 < 0. The Hopf point, which is located at
the origin, is asymptotically stable and for a suitable
A > 0 close to A, = 0, three limit cycles exist, two
stable and one unstable.

Using the MatCont® continuing numerical
bifurcation program to comprehend system
dynamics changes and their influence on parameters.
Fig. 1 investigates the exploration of the limit cycle
starting from the origin Hopf point of the system 16.
It shows the limit cycle regarding the parameter and
emphasizes the three limit point cycles for various
bifurcation parameter values.

(b)
limit point cycles of Hopf
bifurcation point for different values of 24
of system 16; (a) in x — y plane along line 4, (b) in
xyz coordinate plane.

Figure 1. The
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Results and Discussion

The present study delves into the dynamics of a
quadratic ~ 3-dimensional  differential  system,
focusing on the Hopf equilibrium point at the
coordinate origin. Our primary objective is to
investigate the existence and stability of limit cycles
stemming from this key Hopf point. To achieve this,
the classical projection method is employed to
calculate the Lyapunov coefficients associated with
the Hopf point.

Our investigation uncovers four distinct families of
parameter conditions, each leading to a codimension-
three Hopf bifurcation in the quadratic 3-
dimensional differential system. This exploration is
significant for theoretical considerations and has
practical implications. Notably, Our findings are
leveraged to elucidate the intricacies of the n-scroll
chaotic attractor system, a system with broad
applications in secure communication and

Conclusion

In conclusion, our exploration of the quadratic 3-
dimensional differential system centered on the Hopf
equilibrium point has provided valuable insights into
the existence and stability of limit cycles arising from
this critical point. Using the classical projection
method to compute the Lyapunov coefficients
associated with the Hopf point reveals four distinct
families of parameter conditions leading to the
system's codimension of three Hopf bifurcations.
Furthermore, our findings extend to the n-scroll
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