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ECGANCOVID: Efficient Conditional GAN
Architecture for Covid-19 Disease Segmentation

Payman Hussein Hussan 1,2,*, Israa Hadi Ali 1

1 College of Information Technology, Department of Software, University of Babylon, Babil, Iraq
2 Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a global threat, impacting millions worldwide.
While automated detection of lung infections through Computed Tomography (CT) scans is a promising alternative,
segmenting infected regions from CT slices remains challenging due to low-contrast infection boundaries and blurred
appearances. To address this challenge, A deep-learning model called ECGANCOVID-Net is proposed for detection
and identification of infected regions in chest CT images. Our model utilizes a semantic hierarchical segmenter to
detect regions of lung infection caused by Coronavirus in CT medical images. The model consists of two components,
namely the U-CGAN-Net models. The initial neural network, UCGAN-Net1, is designed to detect lung parenchyma.
Subsequently, the second neural network, UCGAN-Net 2, operates on the segmented lungs to accurately identify the
specific regions impacted by COVID-19 lesions. UCGAN-Net comprises a conditional generative adversarial network
(CGAN) incorporating an adapted generator and discriminator. Furthermore, our model employs data augmentation
techniques to address the issue of limited training data. Through extensive trials, it has been discovered that the
suggested methodology exhibits superior performance compared to recently proposed techniques. This is particularly
evident in the improved overall performance of our model when accurately determining the location of tiny lesions.
The proposed ECGANCOVID net has demonstrated exceptional performance in segmenting COVID-19 lesions, achieving
higher localization performance with a Dice Similarity Coefficient (DSC) of 84.5% and Intersection over Union (IOU).
Additionally, the suggested model has undergone external validation using an unseen dataset, resulting in Dice Similarity
Coefficient of 69.7%.

Keywords: COVID-19 disease, Computed tomography (CT) images, Conditional generative adversarial network (CGAN),
Lung and lesion segmentation, Hierarchical segmentation strategy

Introduction

The world is grappling with the challenge of
COVID-19, a respiratory illness caused by the novel
Coronavirus, significantly impacting various aspects
of human life due to its highly contagious nature. As
of August 8, 2021, there have been over 200 million
confirmed cases and 4.25 million reported deaths
worldwide, with the global infection rate continuing
to rise.

Accurate diagnostic methods and efficient
treatment protocols are imperative in addressing the

ongoing pandemic. Various diagnostic techniques,
including isothermal nucleic acid amplification
technologies and real-time reverse transcription-
polymerase chain reaction (RT-PCR), are available for
identifying COVID-19. Currently, RT-PCR has become
widely employed for COVID-19 diagnosis. However,
this method has limitations, including low Sensitivity,
insufficient test kit availability, and suboptimal effi-
ciency. Recent research suggests that chest computed
tomography (CT) images may provide a viable
alternative in healthcare due to their heightened
Sensitivity, accuracy, and ease of accessibility.1
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The assessment of medical images is typically a
laborious and time-intensive task performed by radi-
ologists. While improvements in CT scan resolution
and the number of slices have increased Sensitivity
and accuracy, they have also resulted in elevated
workloads. Clinical decision support systems rely-
ing on automated interpretation of medical images,
particularly through artificial intelligence and deep
learning models, have shown notable progress. Image
segmentation, a sub-field garnering significant atten-
tion, aims to automate finding and labeling areas of
interest within medical images, including organs and
abnormalities. The application of neural networks in
medical image segmentation has demonstrated strong
predictive ability comparable to radiologists’ per-
formance. Implementing an automatic segmentation
tool for Corona-infected regions can serve as a valu-
able clinical decision support system for physicians.
Image segmentation plays a crucial role in assist-
ing radiologists with diagnosis, disease monitoring,
inspection processes streamlining, and accuracy en-
hancement by automatically highlighting abnormal
features and regions of interest (ROIs).2

CT scans have the potential to detect incipient
lesions and can be employed by radiologists for di-
agnostic purposes. The initial stage in evaluating
lung illnesses via medical imaging involves lung
segmentation. Accurate segmentation of COVID-19-
related diseases from CT imaging is essential for
analysis and quantification. Researchers have pro-
posed various techniques for lung segmentation,
categorized into handcrafted strategies and deep-
learning approaches. Handcrafted techniques, such as
morphological-based techniques3 and active contour
models,4 involve physician intervention, are subject
to bias, and are time-intensive. Furthermore, man-
ually designed segmentation techniques are often
tailored to specific imaging modalities, applications,
and datasets, posing challenges in generalizing across
diverse scenarios. There is a pressing need for au-
tomated segmentation of lung infections caused by
COVID-19 in healthcare settings.

Before the advent of Deep Learning (DL), conven-
tional Medical Imagery (MI) segmentation techniques
primarily relied on methods like active contour
models,4 level set-based approaches,5 watershed
algorithms,6 region growing,7 Markov Random
Fields,8 and their respective extensions. However,
these methodologies produced satisfactory outcomes
only when a significant contrast existed between
the background and the object area. Models often
incorporated local feature limitations and curvature
constraints to enhance segmentation accuracy. Nev-
ertheless, such solutions proved less effective in cases
where the object and background areas exhibited

identical characteristics. Therefore, using deep
learning algorithms for addressing medical image
segmentation presents a promising area of research
with both theoretical and practical implications.

Deep learning approaches aim to assist in rapidly
and precisely identifying abnormalities in radio-
graphic pictures. However, for deep learning models
to achieve effective generalization, they require ex-
tensive training with substantial data. The data
must be adequately labeled, especially in tasks such
as image segmentation. The research community
widely acknowledges that convolutional neural net-
work (CNN) based designs are the most promising
and extensively used method currently available.

In medical imagery segmentation, convolutional
neural networks have shown promising results lately.
The Fully Convolutional Networks (FCN)9 model is
frequently employed in contemporary medical im-
age segmentation tasks based on information from
CNN. Subsequently, using semantic segmentation or
pixel-wise classification algorithms, novel techniques
were suggested to enhance the accuracy of segment-
ing contaminated areas in radiographic scans. The
encoder-decoder architecture, frequently utilized for
semantic segmentation, incorporates methodologies
such as the fully convolutional network (FCN). Within
this architectural framework, the encoder module
captures feature representations of the input data.

On the other hand, the decoder module utilizes
these representations to restore location information
that may have been lost during the pooling process,
ultimately generating a binary mask. An exemplary
instance of this architectural design is Unet,
renowned for preserving essential information from
input pictures by using skip connections between the
encoding and decoding layers. The U-Net10 architec-
ture, built with the help of Convolutional Neural
Network (CNN), is modified to achieve better
segmentation in the medical imaging domain.
Various UNet-based models, such as the Attention
Unet11 and Residual Unet,12 have been specifically
developed to effectively segment infections for
COVID-19 purposes.

Generative Adversarial Networks (GANs) have
recently presented an alternative approach to en-
hancing medical image segmentation and obtaining
more precise outcomes, remaining a topic of active
research. GANs have notably improved semantic
medical image segmentation quality thanks
to their exceptional synthesizing capabilities
and potential to extract and distribute data
effectively. The utilization of adversarial loss
during training has been discovered to en-
hance semantic segmentation performance.13

Image generation models, such as Generative
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Adversarial Networks (GANs),14 are increasingly
used for various tasks, and Conditional GANs are
utilized to generate images from existing ones by
incorporating random noise, which is beneficial for
style transfer.

Related works

Recently, numerous studies have proposed Machine
Learning approaches to automate COVID-19 detec-
tion as a classification problem based on biomarker
analysis, such as demographic and clinical infor-
mation. These approaches provide discriminative
semantic features for frameworks aiming at the early
detection of this novel virus. Predicting newly con-
taminated and recovered COVID-19 cases is crucial
for controlling disease progression. In a study,15 the
authors utilized machine learning and laboratory
data to predict COVID-19 patients, comparing three
DL methods: Support Vector Machines (SVM), artifi-
cial neural networks (ANN), and K-nearest neighbors
(k-NN) algorithms. Models were verified with 10-fold
cross-validation and train-test split methods using 18
laboratory data from 600 patients. The results indi-
cated that SVM outperformed the other algorithms
in accuracy. Another studies,16–18 based on levels
of lymphocytes, CRP, and SPO2, employed machine
learning, using a Lasso-logistic regression model to
forecast the risk level of patients with COVID-19. This
research utilized data collected from Azizia Primary
Healthcare Sector- Wasit Governorate-Iraq, predict-
ing multi-class case severity (severe, moderate, and
mild) with over 85% accuracy. This allows for early
intervention, diagnosis, and potentially a reduction
in mortality for COVID-19 afflicted individuals. Tack-
ling the multitude of challenges posed by COVID-19,
strategies to triage patients could aid in determining
treatment priority and administering targeted med-
ication to individuals at high risk of severe illness.
Establishing a Multidimensional Examination Frame-
work (MEF), the study authors17 prioritized severe
COVID-19 patients using integrated multi-criteria
decision-making (MCDM) methodologies. The MEF
considered various dimensions of examination fac-
tors, including demographic information, laboratory
findings, vital signs, symptoms, and chronic illnesses,
to prioritize severe COVID-19 patients.

However, these studies face challenges, as clinical
features alone may not always be adequate for de-
tecting and assessing COVID-19 due to factors such
as atypical presentations and overlapping symptoms
with other respiratory diseases. Clinical signs alone
may make it difficult to differentiate COVID-19 from
similar illnesses. On the other hand, CT imaging

provides a detailed view of lung abnormalities asso-
ciated with COVID-19, offering valuable information
to monitor changes in lung health over time. Ground-
glass opacities, consolidation, and specific lung fea-
tures are better visualized through CT scans.

Recent literatures19–21 have introduced various
diagnostic approaches for automated COVID-19
diagnosis, emphasizing CNN-based classification
models. In response to the challenge of choosing the
most effective deep learning model for COVID-19
diagnosis, a study22 introduced a comprehensive
approach using a unique crow swarm optimization
methodology. This methodology aids healthcare
administrators in selecting and evaluating the most
effective COVID-19 diagnosis models based on deep
learning. Previous studies focused on detecting
and classifying Coronavirus without accurately
identifying and localizing specific lesion areas in a
particular radiographic image.

Conversely, the semantic segmentation networks
exhibit strong performance in identifying regions
affected by Coronavirus in each radiographic image.
Nevertheless, utilizing pixel-level annotated ground
truths is important to effectively train and validate
these segmentation networks.23 Data annotation in
the healthcare field necessitates the involvement
of skilled healthcare practitioners, along with a
substantial allocation of time and resources. Medical
image segmentation aims to precisely delineate
regions of interest (ROIs) in medical images, such as
organs or pathological anomalies, by assigning a label
to each pixel. Segmentation is an essential process,
particularly in the analysis of COVID-19 images, as
it can assist radiologists in diagnosing the disease,
monitoring its course, and enhancing the speed
and efficiency of their work.24–26 Several effective
pixel-wise classification methods utilizing deep
learning have been developed to aid in the swift and
accurate diagnosis of Corona using medical imaging.
For instance, Reference27 devised a comprehensive
network structure to semantically segment images.
Reference28 proposed a sophisticated deep-learning
model called VB-Net for accurately segmenting lung
infections and lungs from CT images of a patient
with COVID-19. Reference29 introduced a multi-task
deep-learning framework that utilizes CT imaging to
accurately differentiate lung infections.

Study30 introduced COVID-SegNet, incorporating
a feature variation block and progressive atrous
convolutions to emphasize the different infected
regions and their boundaries. The proposed method
attained a DSC of 73% for the segmentation of
Coronavirus. In addition, The researchers in study31

devised a method for object recognition that utilizes
bounding boxes to emphasize the contaminated area.
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They employed a weakly supervised methodology to
enhance the Model’s performance using a restricted
number of labeled Coronavirus samples and utilized
different variations of the VGG model to categorize
Corona cases from community-acquired pneumonia
(CAP) and cases without pneumonia. A segmentation
method based on image enhancement to highlight
coronavirus-infected lung areas is presented in,32

While extracting lung areas, each lung is separated
and subjected to local contrast enhancement. This
technique enhances the contrast in the lung images,
resulting in more detailed information about the
target regions.

Consequently, this leads to improved segmentation
outcomes. Authors33 introduced the Inf-Net, a deep
neural network designed to segment lung infections
caused by COVID-19. The network specifically targets
areas with ground glass opacities and consolidation.
The study authors34 recently introduced a more
advanced encoder-decoder design called the PCPLP
network. The Model is enhanced using an upgraded
attention strategy and a multiscale multi-level feature
recursive aggregation module to achieve more precise
segmentation results. This module effectively learns
global feature representations that pertain to lesion
areas. The authors obtained favorable outcomes,
with a dice coefficient of 78%, surpassing previous
cutting-edge models. Expert radiologists can deliver
more accurate and dependable localization through
ground-truth infection masks. Thus, Degerli et al.35

introduced an innovative method to create a map
of COVID-19 infections. They accomplished this by
assembling a collection of 2951 CXR images that
included accurately labeled infection segmentation
masks. Multiple encode-decoder convolutional
neural networks were trained and assessed using
the generated dataset. The highest-performing
network acquired an F1 score of 86% for localized
infections.

Nevertheless, their suggested methodologies are
solely focused on localizing COVID-19 infections and
fail to provide effective and accurately localized in-
formation regarding the affected areas in the CT scan
of the lungs because the infection regions have am-
biguous boundaries, complicating the detection of
their presence. In addition to Coronavirus detection,
the localization of infection is another vital task that
aids in assessing the patient’s condition and determin-
ing the treatment strategy. Additionally, numerous
authors emphasize that the absence of extensive and
specific datasets containing images of illnesses sig-
nificantly complicates the task of training a model.
Added to this is the intricate and time-consuming
process of annotating each image. Only highly skilled
medical personnel can perform this procedure, which

significantly restricts the quantity of data that may
be produced within a short timeframe. In this study,
the aim is to overcome the limitations of previous
research and create a model that can accurately de-
tect COVID-19-associated findings in chest CT images
in a targeted and efficient manner.

Motivation

While the studies mentioned above have shown en-
couraging outcomes in utilizing chest CT for COVID-
19 diagnosis, there is still scope for enhancement,
specifically in lesion segmentation. This improve-
ment can benefit physicians in accurately diagnos-
ing COVID-19 and evaluating the effectiveness of
treatment. Previous research has focused on the seg-
mentation of lungs and lesions, as mentioned above.
Nevertheless, the efficacy of the lesion segmentation
models remains low compared to lung segmentation.
Furthermore, these methods fail to offer efficient and
accurately localized information regarding the in-
fected regions in the CT scan of the lungs.

Therefore, to develop a high-performance method
for the efficient and well-localized detection of
COVID-19-related findings in chest CT images, the
following questions are addressed: How can deep
learning methodologies be enhanced to mitigate the
impact of image resolution issues, particularly when
dealing with CT scans where the appearance of organ
tissues may lead to the mixing of categories of pixels?
What approach could be employed to improve the
delineation of boundaries between the surrounding
normal tissues and infected areas in the lung, and
what adaptations can be made to detect small affected
areas? What innovative strategy can overcome the
constraints posed by limited access to extensive
datasets in areas such as medical image processing,
for example, the absence of comprehensive COVID-19
datasets since early 2020? Due to the sensitive nature
of patient health data, strict regulations and ethical
considerations often restrict sharing and access to this
information.

This paper aims to answer the above questions,
which are significant for COVID-19 lesion segmenta-
tion. The contributions are as follows:

1- Proposing a deep learning hierarchical ap-
proach, ECGANCOVID, which utilizes two
UCGAN-Nets to effectively segregate areas in-
fected with the Coronavirus using C.T. scans.
Our hierarchical approach mitigates irrelevant
background interference by generating lung
contour maps, addressing the issue where the
appearance of other organ tissues in the CT scan
may lead to the mixing of pixel categories.
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Fig. 1. Structure of ECGANCOVID network.

2- To effectively handle the issue of significant
infection variations and low-contrast bound-
aries for segmenting infectious regions from the
lungs, A context-aware conditional generative
adversarial network denoted by (CGAN) with
an adapted architecture for the Generator and
Discriminator is suggested.

3- Our designed Model successfully achieves robust
segmentation of small lesions in chest C.T. im-
ages, performing superiorly to the latest deep
segmentation networks by utilizing the strength
of grouped L1 loss and PatchGAN discriminator
loss functions, contributing to successfully cap-
turing small regions.

4- The performance of ECGANCOVID-net is im-
proved using an augmentation strategy, leverag-
ing a large number of CT images to augment the
training dataset effectively.

The remaining sections of the paper are structured
in the following manner: In Section Related works
our proposed pipeline has been presented, covering
details on datasets, pre-processing methods, the
architecture of the proposed ECGANCOVID-NET,
and evaluation approaches. The experiments and
evaluation metrics are discussed in Section Materials
and methods. Section Experimentations, the
outcomes of our ablation study had been presented,
conducts a comprehensive set of comparison
assessments across the utilized baseline networks,
and thoroughly discusses and analyzes the obtained
results. Finally, in Section Results and discussion, our
conclusions and future work are outlined.

Materials and methods

To address the complex challenge of effectively
identifying coronavirus-infected regions in CT scans,
it is crucial to recognize that information outside the
lungs is irrelevant, as the infected areas are within
the lungs. Therefore, our proposed approach utilizes
a hierarchical segmentation strategy instead of a di-
rect segmentation approach. In direct segmentation,
a CT scan slice is taken as input, and during the pre-
processing phase, the chest CT photographs are scaled
and normalized before being fed into the infection
segmentation network. The output of this process is
the COVID lesion segmentation.

Our COVID-19 hierarchical segmentation network,
named ECGANCOVID-Net (depicted in Fig. 1), is de-
veloped based on Conditional Generative Adversarial
Networks (CGAN) with an adapted architecture for
the Generator and Discriminator and is employed
to segment Coronavirus lesions from CT images
in this study. The input CT volumes are analyzed
slice by slice to identify the COVID-19-infected
regions. Two UCGAN-Net models (UCGAN-Net1 and
UCGAN-Net2 in Fig. 1) are connected in series to
perform hierarchical segmentation.

The primary task of these UCGAN-Net models is
semantic segmentation, classifying each pixel of the
input CT image as either black ‘0’ or white ‘1’. The
output of UCGAN-Net1 indicates the presence of the
“lung region” with white pixels (‘1’) and the “back-
ground” with black pixels (‘0’). Similarly, the output
of UCGAN-Net2 represents the “infectious region”
and “normal/background region” using white pixels
(‘1’) and black pixels (‘0’), respectively.
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Fig. 2. Illustrates visual representations of lung segmentation. The initial column presents the input C.T. scan slice; the second column
showcases the output of the lung mask, and the final column illustrates the results of lung segmented images after masking the lung mask
with corresponding raw images.

For each input CT slice, a binary lung mask is
produced by the first UCGAN-Net1. Subsequently,
the lung is segmented based on the created mask,
and the results are input into the second UCGAN-
Net2, which identifies the infected lung areas. The
segmented lung mask is generated by superimposed
(intersection) of the grayscale image with the binary
lung mask. Fig. 2 displays several instances of lung
segmentation in slices affected by COVID-19 infec-
tion. Finally, COVID-19 pneumonia lesions can be
localized using the infection masks and lung masks
that have been generated.

Dataset description

The present study used two publically available
datasets, namely the COVID-19 CT Lung and In-
fection Segmentation Dataset36 and the COVID-19
CT Segmentation Dataset,37 to train and assess the
proposed system. The dataset used for the C.T.
photographs segmentation modeling procedure, in-
cluding the training and testing phases, is specifically
sourced from the lung CT-scan dataset referenced
in.36 The dataset collected by Ma et al. has a total
of 20 chest C.T. volumes that have been annotated
for COVID-19. All cases were confirmed Corona in-
fections, with the proportion of individuals exhibiting
lung infection ranging from 0.01% to 59%.38 The CT
scans include a total of 3520 slices and have been
sourced from approved sources such as Radiopae-
dia39 and the Corona-Cases Initiative (RAIOSS).40

Additionally, to provide C.T. scan files, reference36

includes two masks intended for segmentation. The
lung mask and the infection mask are the two types
of masks. The dataset was subjected to manual an-
notation by two radiologists and later validated by
an experienced radiologist. Table 1 awards a full
summary of the dataset employed to analyze C.T.
scans. The dataset comprises C.T. scans with varied
width and height dimensions and Depth represented
by slices. Subsequently, the scans are scaled to a stan-
dardized size of 256 × 256 × 1. The provided class
labels for each pixel in the slices indicate whether it
pertains to the region of interest. A pixel assigned
with a label of 1 indicates its association with the
lungs in the lungs annotation and with COVID-19,
notably ground-glass opacities and consolidations, in
the infection annotation. In contrast, a label value
of 0 signifies that the pixel corresponds to the back-
ground. Table 2 displays a comprehensive profile of
the C.T. scan utilized for each patient.

The second dataset was used for testing and eval-
uating the proposed ECGANCOVID model called
COVID-19 CT segmentation dataset37 comprises nine
patients, with a total of 829 slices, where Each slice
has dimensions of 630 × 630 × d*, where d* denotes
that the number of slices is different for each volume.

Pre-processing

To improve the quality of C.T. photographs and
highlight their properties, the CLAHE41 “Contrast
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Table 1. Four samples (patient 1, patient 5, patient 10, and 19) were from the
dataset.36

C.T. scan slice Lung mask Infection mask

Table 2. The source and size information of the C.T. scans
for each patient.

Patient Source Size(width × height × Depth)

Patient1 Raioss 512 × 512 × 301
Patient2 Raioss 512 × 512 × 200
Patient3 Raioss 512 × 512 × 200
Patient4 Raioss 512 × 512 × 270
Patient5 Raioss 512 × 512 × 290
Patient6 Raioss 512 × 512 × 213
Patient7 Raioss 512 × 512 × 249
Patient8 Raioss 512 × 512 × 301
Patient9 Raioss 512 × 512 × 256
Patient10 Raioss 512 × 512 × 301
Patient11 Radiopaedia 630 × 630 × 39
Patient12 Radiopaedia 630 × 630 × 45
Patient13 Radiopaedia 630 × 630 × 39
Patient14 Radiopaedia 630 × 630 × 418
Patient15 Radiopaedia 630 × 401 × 110
Patient16 Radiopaedia 630 × 630 × 66
Patient17 Radiopaedia 630 × 630 × 42
Patient18 Radiopaedia 630 × 630 × 42
Patient19 Radiopaedia 630 × 630 × 45
Patient20 Radiopaedia 630 × 630 × 93

Limited Adaptive Histogram Equalisation” method is
utilized for tackling contrast concerns such as noise
and intensity inhomogeneity.

This technique was utilized to improve the contrast
of the acquired images, and it is a variation of Adap-
tive Histogram Equalisation (AHE).42 The main goal
of the CLAHE technique is to determine the mapping

for each pixel by examining the grayscale distribution
in its surrounding area. This is accomplished using a
transformation function that minimizes contrast am-
plification in densely populated areas. The efficacy
of (CLAHE) in allocating displayed intensity levels
in chest C.T. scans has been demonstrated in previ-
ous studies.42,43 By implementing this methodology,
identifying the COVID-19 infection area within a C.T.
image is improved, making it more distinguishable.
Table 3 compares the CT-scan slices before and after
implementing CLAHE. All datasets utilized for this in-
vestigation had photos in the neuroimaging informat-
ics technology initiative (NITI) format. The format of
all images had been changed to PNG and normalized
the pixel values to fall within the range of 0–255
to limit the present variability. For the segmentation
tasks, the final step was to resize all of the photos
from the three different datasets to 256 by 256.

Data augmentation

Due to the scarcity of annotated medical images
and to improve the generalization capabilities of
our models while reducing overfitting, data aug-
mentation techniques have been implemented in our
training sets. This study employed data augmentation
techniques, including horizontal flipping,44 to gener-
ate more images with lesions. Horizontal flipping, as
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Table 3. Comparison of CT-scan images before and after applying Contrast
Limited Adaptive Histogram Equalization (CLAHE) pre-processing.

Without CLAHE With CLAHE

a geometric transformation in image data augmenta-
tion, refers to mirroring an image horizontally. It in-
volves flipping an image across a vertical axis, creat-
ing a mirror image of the original by reversing the left
and right sides. This technique is part of the funda-
mental data manipulation methods used to enhance
datasets. In horizontal flipping, Data augmentation
is implemented for each slice in the training set to
generate more samples by the original image flipped
or mirrored left to right, generating a new image
that is the horizontal reflection of the initial image.
Following the implementation of data augmentation
techniques, the training set has been expanded to in-
clude total slices. Similarly, the test set now comprises
1001 CT slices. The data set’s size grew around 83.6%
and 83.5% for the training and test sets, respectively.

Proposed network architecture for segmentation of
the lung and lesions

The Generative Adversarial Network (GAN)
model,13 initially proposed by Goodfellow et al. In
2014, it was extensively utilized in image processing.
These models are employed to transform input
images into their corresponding output images. The
GAN framework comprises two separate networks:
a generator and a discriminator. The Generator is
responsible for synthesizing high-fidelity images,
while the Discriminator’s role is to differentiate

between synthetic and authentic photos from the
training dataset, classifying them as either fake
or real. The methodology employed entails the
utilization of a min-max strategy by Generator G in
conjunction with the Discriminator. The goal is to
transform a collection of noise samples, denoted as
z, that follow the distribution into actual data that
aligns with the distribution. pdata. During the training
phase, the discriminator network aims to distinguish
between actual data samples y, which follow the
probability distribution. py, and modified data
samples G(z), which conform to the distribution pdata.
The mathematical representation of the objective
function for the min-max GAN is as follows:

minG maxD LGAN (G, D) = minG maxD Ey∼py[logD(y)]
+ Ez∼pz[log(1− D(G(z)))] (1)

The symbols E and log represent the mathemat-
ical operations of expectation and logarithm. The
previous output of the Generative Adversarial Net-
work demonstrates a notable level of ambiguity,
which prevents its ability to generate the desired ob-
jects. In 2014, Mirza and colleagues proposed using
Conditional Generative Adversarial Nets (CGAN)14

as a potential solution to a specific problem. This
approach involves the generation of output data x
using a generator G, which utilizes real data y and a
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Fig. 3. Structure of the Conditional Generative Adversarial Network for segmentation of lungs (training phase).

random noise vector z. The given expression can be
G: {y,z}→ x. Meanwhile, the Discriminator of CGAN,
referred to as D, takes the generated and real data
(x and y) as inputs and aims to distinguish between
them. The mathematical formulation of the objective
function for Conditional Generative Adversarial Net-
works (C-GAN) is as follows:

LCGAN(G, D) = Ex∼px , y∼py [logD(x, y)]
+ Ey∼py , z∼pz[log(1− D(y,G(y, z)))] (2)

The Conditional Generative Adversarial Network
(CGAN) technique is used in the current study to
segment the lung and lesions in COVID-19. The CT
scans are input for the Generator, designed to produce
a corresponding lung mask depending on the pre-
dicted outcome. The Discriminator accepts two sets
of inputs: the actual pair (the original chest C.T. scan
and its related ground truth lung mask) and the fake
pair (the original chest C.T. scan and the synthesized
lung mask). The training method for the Genera-
tor and Discriminator is adversarial, as illustrated in
Fig. 3. The Generator tries to fool the Discriminator
by generating progressively realistic images of a lung
mask. At the same time, the Discriminator attempts
to distinguish between genuine and fake photos. The
Generator, denoted by G, takes an input image of a
chest C.T. scan, denoted by y, and produces a syn-
thesized segmented mask image, denoted by G(y).
At the same time, The Discriminator indicated that
D’s primary aim is to distinguish between two sets
of photographs. The first set consists of a synthetic
picture (y) and a ground truth mask image, whereas
the second set consists of a synthetic image (y) and a
generated image (G(y)).

Our proposed network, UCGAN-net, is designed
to accurately segment the lung’s affected region
from C.T. images. This segmentation is achieved
by utilizing Conditional Generative Adversarial
Networks (CGAN) with an adapted architecture for
the Generator and Discriminator. The generative
network learns the ability to identify our Region
of Interest (ROI) and generates a binary mask
that precisely delineates its boundaries. On the
other hand, the Discriminator learns the ability to
distinguish between authentic segmented masks and
artificial ones. Our proposed CGAN architecture
(UCGAN-net) is inspired by Unet10 and the
Patch-GAN45 models focusing on convolutional
layers for extracting low and high-level features
from input images, where the proposed deeper a
U-Net has been used instead of an autoencoder as
the Generator’s backbone to preserve low-level and
textural information also, the Discriminator has been
changed to Patch-GAN capable of handling large
images based on the fixed-size patch discriminator.

Generator network with skip connection

The research employed a convolutional encoder-
decoder architecture for the generator network,
which resembles Unet10 and allows it to perform
style transfer based on paired training images while
preserving the pixel-wise characteristics of the source
image by combining high-level semantic and detailed
pixel information.

The generator structure consists of three primary
components: the encoder, the bottleneck, and
the decoder. To enhance the accuracy of UNet
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in generating segmentation maps, our Generator has
been improved by augmenting the number of layers
in the encoder. Specifically, an encoding section
that adheres to the conventional architecture of
convolutional neural networks, consisting of seven
encoder blocks instead of the original four blocks
in the Unet10 architecture, has been incorporated.
Every encoder block processes an input image by
applying a single convolutional layer, followed by
batch normalization and a leaky rectified linear
unit with a slope of 0.2. In contrast to the original
UNet, all max-pooling layers have been eliminated.
After each block, the kernels are doubled by two to
enhance the architecture’s ability to effectively learn
complex structures. The bottleneck part serves as the
intermediary between the contraction and expansion
layers. Its structure consists of a single 4 × 4
convolutional layer with a stride of 2 × 2, which is
then followed by a ReLU activation layer. These con-
nections are commonly known as skip connections.
The expansion part, similar to the contraction section,
consists of seven blocks. Within each decoder block,
the input image undergoes a sequence of operations:
a deconvolutional layer, batch normalization, a
dropout layer, concatenation, and an activation
layer. In our suggested Model, various techniques are
employed, such as batch normalization and dropout,
to mitigate the issue of overfitting. In contrast to
the encoder blocks, the number of feature maps
is halved to preserve symmetry. The input for the
relevant contraction layer is concatenated in the
concatenate layer. This guarantees that the captured
features during the contraction phase are utilized to
reconstruct the new image.

The number of encoder blocks corresponds to the
number of decoder blocks. Subsequently, the output
from the expansion block is sent into another decon-
volutional layer, which adjusts the number of feature
maps to match the desired number of segments or
classes. The convolutional and deconvolutional layers
both employ a 4 × 4 kernel and a 2 × 2 stride, re-
sulting in the reduction and expansion of the feature
maps, respectively. Fig. 4 depicts this architecture.
Using the deeper UNet architecture in the Generator
of UCGAN NET provides several benefits. One key
advantage is its ability to handle large amounts of
spatial information, making it well-suited for medical
image segmentation tasks where the input images can
be very large.

Additionally, the symmetrical architecture of the U-
Net enables the efficient transfer of information from
the down-sampling path to the up-sampling path,
preserving fine details such as texture and object
boundaries, of the segmentation mask. The U-Net also
includes skip connections, which are implemented by

concatenating activation from an earlier layer to the
activation of a deeper layer. This allows the network
to access high-level and low-level features, providing
a complete representation of the input image.
The skip connections also help capture long-range
dependencies in the data by combining features from
the contracting path with those from the expanding
path.

Discriminator network

The Discriminator evaluates the authenticity of a
given binary mask by determining whether it is real
or generated. Specifically, the employed Discrimina-
tor in this study is referred to as a Patch-GAN,45

which partitions the input image into a collection of
patches and assigns a single scalar output to each
Patch. Unlike a traditional image discriminator that
predicts the full image, a patch discriminator pre-
dicts each Patch and the final prediction is obtained
by averaging all the patch predictions. Additionally,
our patch discriminator requires fewer parameters,
demonstrates robust performance with large and
blurry images, and has a shorter computational time.
Our Model utilizes a patch discriminator with a patch
size of 70 × 70 pixels, resulting in the highest image
sharpness in both spatial and spectral domains. The
implemented Model takes two input images that are
concatenated, and Gaussian noise with a standard
deviation of 0.2 is introduced to the concatenated
input before entering the initial hidden layer to mit-
igate overfitting. The structure of our Discriminator
includes three hidden layers, followed by batch nor-
malization and leaky ReLU. The convolutional layers
consist of filters with dimensions of 4 × 4 and a
stride of 2 × 2. Furthermore, the Discriminator is
subjected to regularization by imposing constraints
on the magnitudes of its gradients through the utiliza-
tion of L1 regularization. Hence, an L1 regularizer is
incorporated into every convolutional layer.

The final block within the Discriminator produces
a patch of dimensions 30 × 30 × 1, wherein each
pixel of this Patch serves to classify a distinct section
of the input image. The Leaky Rectified Linear Unit
(ReLU) is frequently utilized as an activation function
in all layers. Except for the last layer, it is substituted
with a sigmoid function. Fig. 5 presents an architec-
tural schematic depicting the discriminator network
employed in the UCGAN Net.

Loss functions

One of the primary challenges encountered in train-
ing Generative Adversarial Network (GAN) models
relates to establishing a suitable formulation for the
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Fig. 4. The architectural diagram shows the generator network utilized within the UCGAN framework.

loss function. The loss function is utilized to compute
the distinction between the observed and expected
values. Various objective functions were integrated
to achieve network optimization to derive the ulti-
mate loss function. Our UCGAN’s objective function
incorporates both an adversarial loss function and
a pixel-wise loss function L1, which serves to pe-
nalize segmentation errors. Here, the Generator, G,
is trained to minimize the objective, while the Dis-
criminator, D, is trained to maximize the objective.
Therefore, Eq. (3) can be expressed as follows.

G∗ = argminGmaxDLCGAN (G, D) (3)

G transforms lung CT scans into accurate masks to
minimize the cross-entropy loss of D. The adversarial
loss can be interpreted as a form of structured loss,
where G is penalized if the anticipated masks contain
unrealistic pixels.

The final objective adds the L1 loss term to Eq. (3)
because the Generator aims not only to fool the
Discriminator but also to minimize the pixel loss
between the real and synthetic images. The L1 loss
function Eq. (4), also known as the least absolute
error, minimizes the sum of errors, and it is chosen
here because it preserves sharp edges and produces
less blur in the generated images:45

LL1 (G) = Ex,y,z ‖y− G (x, z)‖1 (4)

Therefore, adding Eq. (3) to Eq. (4) gives the final
objective used in this study in Eq. (5).

LossUCGAN NET =argminGmaxDLCGAN(D, G)+ λ LL1 (G)

(5)

The hyper parameter λ determines the magnitude
of the L1 error weight.45
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Fig. 5. The structure diagram of the discriminator network utilized
in our UCGAN framework.

This combination of loss functions, adversarial loss
(for global consistency), and pixel-wise loss (for
fine-grained details) can contribute to achieving the
described characteristics and helps make the Model
contextually aware and globally consistent. The loss
functions included in our Model isolate the region of
interest and its complex boundaries. Similarly, they
serve as optimization techniques for extracting re-
gion, edge, and spatial features in both the encoder
and decoder components of the Model.

Experimentations

Model training and testing

The Generator and Discriminator are concurrently
optimized, with the Generator acquiring the ability
to generate a plausible binary mask while the Dis-
criminator develops the skill to distinguish between
generate and authentic segmentation. Our UCGAN

Table 4. Training parameters for UCGAN-Net.

Optimizer Adam

Number of epochs 50 epochs
Loss functions Binary cross entropy loss and L1 Loss
Momentum of β1 0.5
Momentum of β2 0.999
Batch size 10
Learning rate 0.0002
λ 100
patch size 70 × 70

generator employs two methods to update its weights
in the convolutional filters during training. The first
method involves an internal circuit that utilizes an
enhanced backpropagation technique through skip
connections. The second method involves an external
path, as shown in Fig. 3, which supplies the Generator
with comparison results between the ground truth
and the fake images generated by the Discriminator.
Consequently, the Generator acquires the ability to
generate segmentation maps that closely resemble
the target images. Our study utilized two datasets:
the training and testing sets were obtained from
the COVID-19 CT Lung and Infection Segmentation
Dataset.36 This dataset was used to train and evaluate
the proposed ECGANCOVID Network, where the
training set consisted of 90% of the total images,
while the testing set comprised the remaining 10%.
Also, the COVID-19 CT segmentation dataset16 was
utilized as an external dataset in our study to evaluate
the quantification performance of our Model.

The training phase of our Model utilizes the Adam
optimizer46 as the optimizer for training weights;
the objective is to minimize the segmentation loss
function. The lung and lesion segmentation networks
are trained with a learning rate of 2× 10−4, the
momentum of β1 of 0.5 and β2 of 0.999, and a
batch size of 10. The optimization process typically
takes around 50 epochs to achieve convergence.
Our codebase is implemented in Python, making
use of the TensorFlow libraries. The experiments
utilize a total of 16 gigabytes of random access
memory (RAM), an Intel Core i7 processor operating
at a frequency of 2.30 gigahertz, and a dedicated
graphics processing unit (GPU) with 8 gigabytes of
memory, specifically the NVIDIA GE-FORCE RTX
model. Table 4 contains the training parameters of
the UCGAN-Net utilized in the research.

Evaluation metrics

Quantitative evaluations have been conducted to
assess the proposed approach’s performance in lung
segmentation and infection segmentation tasks. The
assessment of the segmentation tasks was done at the
pixel level. In this evaluation, the positive class was
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Fig. 6. The confusion matrix, as well as evaluation metrics.

defined as the foreground, which includes the lung
or infected region. In contrast, the negative class was
defined as the background.

Multiple major performance parameters were ex-
amined to evaluate the Model’s effectiveness in ef-
fectively segmenting COVID-19 infections inside the
lung. The metrics encompassed in this work consist of
the dice similarity coefficient (DSC), intersection over
union (IoU), Sensitivity, specificity, and Precision.

Evaluating medical image semantic segmentation,
performance often involves using commonly em-
ployed metrics such as DSC and IoU. The concepts
of Sensitivity and Specificity are utilized to assess
the Model’s capacity to differentiate between positive
and negative pixels. Precision pertains to the Model’s
ability to make accurate predictions. The evaluation
metrics are defined in the following manner:

Intersection over Union (IoU) =
TP

TP+ FP+ FN
(6)

Dice Similarity Coefficient (DSC) =
2TP

2TP+ FP+ FN
(7)

The statistical metrics IoU and DSC are utilized to
evaluate the spatial overlap between binary ground
truth and anticipated segmentation masks. Neverthe-
less, a notable distinction exists in that DSC provides
a higher weight to T.P. pixels (representing accurate
lung/lesion predictions) than IoU.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(8)

Accuracy can be defined as the ratio of accurately
classified pixels to the total number of pixels in an
image.

Precision =
TP

TP+ FP
(9)

Sensitivity =
TP

TP+ FN
(10)

Specificity =
TN

TN+ FP
(11)

The proportion of correctly predicted positive
samples to the total number of positive class samples
is called Sensitivity. Precision is a parameter that
evaluates the percentage of correctly categorized
positive class C.T. samples among all positive
class C.T. samples. The proportion of accurately
predicted negative class samples to the total number
of negative class samples is referred to as specificity.
The segmentation model with the highest dice
similarity coefficient and IoU score is considered
the best. Higher accuracy and Corona sensitivity are
desirable in a classification model.

Fig. 6 illustrates the confusion matrix that may
be constructed for the anticipated mask, which
matches the C.T. slice. This matrix is used to
calculate the aforementioned metrics based on
correct predictions. P and G indicate the anticipated
and ground-truth masks, respectively. In this context,
TP (True Positive) indicates the count of correctly
identified lung or infected pixels, TN (True Negative)
signifies the count of correctly identified non-lung
or uninfected pixels, FP (False Positive) corresponds
to the count of infected or lung pixels erroneously
identified as non-lung or non-infected pixels, and FN
(False Negative) denotes the count of non-lung or
uninfected pixels that are erroneously classified as
lung or infected pixels.

Results and discussion

This section presents the quantitative results of
the lung and lesion segmentation models and a
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Table 5. The quantitative outcomes of the UCGAN Net1
model on the test set derived from the COVID-19 CT lung
and infection segmentation dataset.

DSC(%) IOU(%) SENS.(%) Speci.(%) Pre.(%)

97.5 95.4 97.5 99.8 97.7

comprehensive ablation study. Additionally, our
Model was evaluated on a separate and independent
test set. Finally, the proposed ECGANCOVID-Net’s
performance (that includes both UCGAN-Net1 and
UCGAN-Net2) was compared with other deep models
in previous studies.

Lung segmentation

The framework under consideration, called
ECGANCOVID-Net, comprises two main components:
UCGAN-net1, responsible for lung segmentation, and
UCGAN-net2, responsible for infection segmentation.
This framework is visually depicted in Fig. 1. The
purpose of these networks is to effectively and
precisely delineate the boundaries between the
lung and areas affected by infection in a provided
C.T. picture. The main usage of the output from
U-CGAN-net1 is in the post-processing phase, where
it is employed to improve the performance of
UCGAN-net2 and achieve precise localization of the
infected region within the C.T. image. Therefore, the
segmentation of the lungs plays an essential part as
a pre-processing step in this process.

In this study, the UCGAN-net1 model has been
applied to enhance the Precision of the cropped lung
regions in our proposed method. Table 5 presents
a comprehensive overview of the quantitative
outcomes obtained from the proposed Model for
lung segmentation; it has been repeated in 50 epochs
with batch size ten and achieved the DSC, IoU,
Sensitivity, Specificity, and Precision, are 0.975,
0.9538, 0.9750, 0.9983, and 0.9766, respectively
which is demonstrated in it.

Table 6 demonstrates that our lung segmentation
network can enhance the original segmentation per-
formance of the Dice Similarity Coefficient by 3.6%.
Additionally, compared to other state-of-the-art seg-
mentation models, it achieves improvements of 6.4%,

1.0%, and 8.3% in terms of Intersection over Union
(IOU), Specificity, and Precision.

Despite the significant impact of COVID-19 on
the lungs, the trained Model successfully achieved
accurate segmentation of the lung boundaries, as
demonstrated in Fig. 7. This outcome underscores
the strong performance and reliability of this study’s
proposed lung segmentation model.

COVID-19 lesion segmentation

To illustrate the impact of each component on
the performance of the proposed Model, an abla-
tion study was conducted. Initially, the Model was
trained without integrating the first UCGAN1 NET
into the architecture of ECGANCOVID-NET. Subse-
quently, UCGAN1 NET was integrated into our Model
but excluded the use of the Horizontal flipping data
augmentation technique. Finally, the performance of
the proposed Model trained with data augmentation
has been examined.

Table 7 presents the results of different configura-
tions of the examined models. The baseline model
yielded DSC and IoU scores of 76.0% and 65.5%,
respectively. This initial assessment suggests the
potential for improving model performance through
the implementation of a hierarchical segmentation
strategy using cascaded UCGAN-Nets models. Rather
than directly segmenting the COVID-19-infected
area, our approach generates lung contour maps from
the predicted lung mask. These contour maps are
subsequently utilized as input for another UCGAN-
Net model to accurately localize the infected regions.
In the case of infection segmentation by hierarchical
segmentation (ECGANCOVID), the DSC improves by
7.3% compared to the direct segmentation model.

Expanding our dataset and training our Model on
it achieved gains of 8.5% and 13% in DSC and IoU
scores, respectively, when compared to the base-
line model. This demonstrates the positive impact
of dataset expansion and training on enhancing the
Model’s segmentation performance.

The DSC of 84.5 and IOU of 78.5 for COVID-19
lesion segmentation demonstrate a significant level
of Precision in our Model’s capacity to detect and
delineate lesions. Within a clinical context, these

Table 6. Comparison of the lung segmentation outcomes achieved by employ-
ing the most advanced deep-learning models and the proposed UCGAN Net1.
(The most optimal outcomes are presented in bold formatting).

Architecture DSC(%) IOU(%) SENS.(%) Speci.(%) Pre.(%)

UNET 53.9 42.1 80.8 74.3 42.3
ATTEN RES UNET 93.6 88.5 99.5 98.8 88.7
ATTEN UNET 93.9 89.0 99.3 98.8 89.4
UCGAN NET1(ours) 97.5 95.4 97.5 99.8 97.7
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Fig. 7. The first row of the shown images consists of C.T. images, while the second row represents the ground truth. The subsequent
rows (3–6) display the segmentation masks generated by three networks and our network. Additionally, the dice score values for each
segmentation mask are provided.

Table 7. Ablation study on our model test results.

Models used DSC% IOU% SENS.% Pre.%

Direct segmentation (U-CGAN Net) 76.0 65.5 73.8 81.7
Hierarchal segmentation(ECGANCOVID Net)Without data augmentation 83.3 73.6 79.8 89.7
Hierarchal segmentation(ECGANCOVID Net) With data Augmentation 84.5 78.5 84.6 85.8

metrics are essential as they indicate the Model’s
efficacy in accurately detecting and delineating the
actual extent of lesions in relation to the ground
truth. A greater DSC and IOU indicate a stronger
correspondence between the Model’s predictions and
the real lesions. The clinical utility of such perfor-
mance is significant where Healthcare professionals
rely on accurate segmentation for various purposes,
including disease diagnosis, treatment planning, and
monitoring disease progression.

Among the several evaluation metrics, it is ob-
served that the Precision metric yields a value of

85.8, signifying that the Model produces around 14%
erroneous positive predictions when applied to the
test set. Additionally, it is noteworthy that the metric
sensitivity value of the ECGANCOVID model is con-
siderably greater than other measures. This suggests
that the Model performs better in accurately identi-
fying and localizing the intricate patterns associated
with the infection.

The exceptional performance across DSC, IOU,
Precision, and Sensitivity metrics enhances the
clinical utility of the Model. It suggests that the
Model is accurate, reliable, and effective in lesion
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Table 8. A comparative analysis evaluates the test results of both state-of-
the-art and proposed models. The test set utilized in this analysis is obtained
from the COVID-19 CT Lung and Infection Segmentation Dataset.36

Architecture DSC(%) IOU(%) SENS.(%) Pre.(%)

ATTEN RES UNET 77.8 65.9 78.0 81.1
ATTENTION UNET 74.8 63.1 72.9 80.5
ECGANCOVID Net(ours) 83.3 73.6 79.8 89.7

Table 9. Comparison of test results obtained from two of the most effec-
tive baseline segmentation techniques and our proposed approach in the
context of COVID-19 lesion segmentation on an external dataset.37

Architecture DSC(%) IOU(%) Prec(%) ACCU.(%)

ATTEN UNET 45.3 32.5 38.2 97.5
ATTEN RES UNET 54.8 41.8 46.4 98.0
ECGANCOVID NET(our) 69.7 56.8 62.6 99.2

segmentation, providing valuable information for
clinicians to diagnose and treat COVID-19 cases.

Furthermore, the obtained results are compared
to various advanced segmentation models, as shown
in Table 8. The ECGANCOVID-Net approach out-
performed other techniques, significantly enhancing
evaluation metric values. The Dice Similarity Coeffi-
cient (DSC) and Intersection over Union (IOU) scores
quantify the degree of overlap between the predicted
lesions and the actual ground truth. Higher scores
of our Model indicate precise delineation of lesions,
providing crucial information for diagnosis and
treatment planning. Our Model’s Precision, at 89.7%,
underscores its ability to reliably identify positive
cases (lesions) and reduce the occurrence of false
positives in clinical scenarios compared with other
baseline models. The increased Precision of the Model
enhances its reliability in generating accurate predic-
tions, which is crucial for clinical decision-making.

ECGANCOVID Model’s high Sensitivity augments
its utility in detecting lesions, which is particularly
important for early detection and appropriate
treatment of COVID-19-related lesions. These
measures collectively affirm that the ECGANCOVID
Model is clinically valuable and successful in
accurately segmenting lesions.

Fig. 8 shows the segmentation networks’ prediction
samples. The results collected demonstrate our
Net’s better performance than other networks. The
ATTENTION UNET and Direct segmentation
(UCGAN Net) have shown the ability to segment large
lesions accurately. Nonetheless, the performance of
both models on tiny lesions is mediocre. On the other
hand, the ECGANCOVID-NET outperformed in accu-
rately identifying small lesions in the cases presented
in Fig. 8 (second, fourth, fifth, and seventh).

Furthermore, the segmentation performance of
ATTENTION RESIUAL UNet is better than theirs, but

the error rates of these three models on boundaries
are still very high. Compared with these three typical
models, the overall performance of our Model on
small lesions is better.

Assessment of the ECGANCOVID model’s
generalization

After training the two UCGAN networks and
integrating the entire analysis pipeline into the
ECGANCOVID system, a separate set of unseen data
that was not used during training was utilized to
assess the generalization capabilities of the Model,
specifically the COVID-19 CT segmentation dataset.37

External validation with an unseen dataset is a crucial
step to verify the reliability and effectiveness of
ECGANCOVID-Net in real-world applications beyond
the training data. The main objective is to assess how
well the Model generalizes its learned patterns to
new, unseen instances, gauging its ability to handle
data previously exposed.

The performance metrics for the entire process
were quantified using measures such as DSC, IOU,
Precision, and Accuracy (refer to Table 9). During
our observation, a perfect overlap was noted between
the predicted and reference lesion masks regarding
the Dice Similarity Coefficient (DSC) and Intersection
over Union (IOU) achieved by our Model. The metrics
for infection segmentation show an improvement of
14.9% and 15.0%, respectively. However, it is
worth noting that the precision metric has the
lowest value, indicating that the ECGANCOVID
model generates approximately 37% of false
positive predictions from the external test dataset
compared to other baseline segmentation models.
Fig. 9 visually compares the lung and lesion masks
generated by the ECGANCOVID Net and the reference
masks.
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Fig. 8. Displays the prediction outcomes of various representative models. In this study, the C.T. image was denoted as A, the ground truth
as B, the results of attention UNet as C, the results of attention residual UNet as D, the results of direct segmentation using UCGAN Net as
E, and the results of hierarchical segmentation using ECGANCOVID Net as F.

Comparison of ECGANCOVID model with prior
works

To perform a comprehensive assessment, our re-
sults were compared with those obtained by other
researchers using the same publicly available dataset.

The relevant work was organized and condensed in
Tables 10 and 11. Our model outperforms all other
models with a DSC of 84.5%, Precision of 85.8%, and
Specificity of 99.9%. The authors in47 developed a
novel neural network architecture, CHS-Net (COVID-
19 hierarchical segmentation network), specifically
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Fig. 9. The rows display five samples (patient 1, patient 3, patient 4, patient 5, and patient 9) obtained from the COVID-19 CT segmentation 37

test dataset. The columns consist of the following: the original images are displayed on the left side. At the same time, the overlays between
the predicted lung masks and the reference lung masks are shown in the center column. Lastly, the overlays between the predicted COVID-19
lesion masks and the reference COVID-19 lesion masks are displayed in the right column. The reference masks are shown in green, while
the anticipated masks generated by the ECGANCOVID system are represented in blue.

designed for COVID-19 infection segmentation. CHS-
Net and ECGANCOVID-NET were trained on 2D CT
scans and achieved COVID-19 infection segmentation
DSCs of 0.816 and 0.845, respectively. It is important
to mention that CHS-Net is based on a UNet with two
cascaded residual attention inception UNet networks

in a sequence of encoder-decoders for Corona infec-
tion segmentation. Our model was able to outperform
the CHS-Net network and addressed the problem
presence of false positives in the results produced
by it, which generated approximately 25% of false
positive predictions using hybrid loss functions in
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Table 10. Comparison of our proposed UCGAN Net1 with
other deep models in previous studies on lung segmentation.

References Year Model (Method) DCS%
2 2020 3D UNet and Residual Unet 95.6
50 2021 3D Unet 95.6
51 2022 two cascaded deep FCNs 96.1
47 2022 CHS-Net 96.3
52 2023 DLShelper 96.0

Ours UCGAN net1 97.5

ECGANCOVID, where our model successfully reduced
number of false positive predictions by 11%.

Based on the Ma et al. dataset,36 ECGANCOVID
achieved a specificity of 99.9%, outperforms other
architectures for COVID-19 infection; this indicates
our Model’s effectiveness in capturing and correctly
delineating the target region in comparison to
the total actual pixels in that region. The findings
presented in Table 11 indicate that utilizing our lesion
segmentation model on CT images can substantially
enhance the Model’s performance where our Model
can accurately identify and segment 84.6% of
the actual positive lesions out of the total lesions
present in the test dataset. It outperformed all other
approaches mentioned in Table 11 and achieved
results close to those in references,48,49 Given the
advances in the proposed method, The following
highlights are to be emphasized:

• The ECGANCOVID Net architecture exhibits good
results for segmenting lung parenchyma and areas

affected by COVID-19, compared with the results
obtained by related works that employed the same
public dataset.

• The proposed method successfully segments areas
affected by COVID-19, particularly in accurately
identifying tiny lung lesions from its hierarchical
segmentation strategy executed via the proposed
cascaded UCGAN Nets with 70 × 70 PatchGAN
architecture. This is extremely useful, providing
specialists with new perspectives for analyzing
the lesion.

• The proposed approach involves training the loss
function by taking into account the full image
rather than focusing on pixel-wise loss. This
method enhances their contextual awareness and
promotes global consistency. Including L1 loss
helps to preserve fine details in the generated
images and Adversarial training contributes to
capturing global structures and improving the
overall visual quality of the generated images.

• To avoid overfitting and dealing with required
paired data for training, data augmentation
strategies like rotation are used. Model learning
had been successfully enhanced by 1.50% and
2.90% in the Dice Similarity Coefficient for lung
and lesion segmentation, respectively.

While the ECGANCOVID model provided better re-
sults, the question of how to reduce the presence of
false positive predictions in the results produced by
our architecture remains an important consideration.

Table 11. Comparison of the proposed ECGANCOVID model with other deep models in
previous studies on COVID-19 infection segmentation.

References Year Model (Method) DCS Sen. Prec. Spec.
53 2020 CoSinGAN 61.5 - - -
33 2020 Semi-Inf-Net 73.9 72.5 96.0
54 2020 MultiResUNet 74.3 - - -
2 2020 3D UNet and Residual UNet 76.1 73.0 - 99.9
38 2021 3D UNet 67.3 - - -
55 2021 3D UNet 70.4 68.2 - -
56 2021 D2A UNet 72.98 - - -
57 2021 LCFCN 75.0 86 - 97
50 2021 3D UNet 80.4 - - -
48 2021 MiniSeg segmentation network 76.3 85.06 - 99
49 2021 3D CU-Net 77.1 83.7 - 99.8
58 2021 PSGR UNet, PSGR U2Net 78.6 77.83 - 99.8
59 2021 LungINFseg 80.3 83.1 - 99.5
47 2022 CHS-Net 81.6 - 75.6 96.9
60 2022 HADCNet 72.3 69.4 - 99.7
61 2022 SSA-Net 65.2 - - -
62 2022 DMDF-Net 75.7 72.78 - 99.8
51 2022 two cascaded deep FCNs 78.0 82.2 - 95.1
63 2023 U2 -Net+PSGR module 78.6 77.83 - 99.8
64 2023 SELDNet 79.1 76.3 - 96.7
65 2023 Cov-TransNet 80.3 77.2 84.2 99.5

Ours ECGANCOVID 84.5 84.6 85.8 99.9



BAGHDAD SCIENCE JOURNAL 2025;22(2):706–729 725

Limitation

Obtaining extensive data for effective training is
crucial to ensure the Model’s robustness. One of
the limitations of this study is the scarcity of pub-
licly available annotated imaging datasets which
have diverse imaging data, including various COVID-
19 states, other pneumonia cases, healthy control
samples, and comprehensive clinical and laboratory
information). This makes the current segmentation
approach in our research biased due to it is only
trained with COVID-19-related images for lung lesion
segmentation that is used as the first step of sever-
ity assessment and prediction of COVID-19 patients
since COVID-19 has close similarities with viral pneu-
monia diseases like influenza, and other pneumonia,
or entirely unrelated medical conditions like cancer,
eliciting distinct features for diagnosed task a great
challenge. So the patients with COVID-19 needed to
be diagnosed with various features along with Chest
CT scan images such as clinical and laboratory fea-
tures. To guarantee the robustness and comparability
of models, building comprehensive, accepted public
benchmark datasets is essential.

Conclusion

One of the biggest problems in the localization of
lesion areas task is the identification of boundaries
that arise due to the image resolution, where The
organ’s tissues appearing in the CT scan may lead
to mixing the categories of pixels. To tackle this
problem, an approach called ECGANCOVID-Net,
a hierarchical segmentation network that detects
regions affected by COVID-19 in lung contour maps
obtained from computed tomography (C.T.) images,
has been proposed. The proposed method consists of
two cascaded UCGAN Net models that employ the
adversarial terms in training, and it foists higher-
order spatial consistency instead of spatial contiguity.
The UCGAN model enhances the performance of
a conditional generative adversarial network by
incorporating advanced components to modify its
Generator and Discriminator. Our Model was trained
successfully on chest C.T. photos and corresponding
ground truth masks for lung and lesion, obtained from
a publicly available dataset known as the COVID-19
CT Lung and Infection Segmentation Dataset.

To demonstrate the effectiveness of our
methodology, an ablation analysis was performed
to assess the Model’s performance. Furthermore,
a comparative analysis of the performance of our
proposed methodology with several popular baseline
architectures utilized for COVID-19 segmentation,
including Unet, attention Unet, and Atten res Unet,
has been conducted. Additionally, our results were

compared with those obtained by other researchers
who employed the same publicly available dataset.
The experimental findings showed that the suggested
Model has improved performance in segmenting
areas affected by COVID-19, particularly in
accurately identifying tiny lung lesions.

The ECGANCOVID-Net model, after implement-
ing data augmentation techniques, has demonstrated
notable performance in various evaluation metrics
and higher localization performance with 84.5%
DSC, while the IOU (Intersection over Union) score
achieved 78.5%. Additionally, the precision score ob-
tained a value of 85.8%, indicating that the Model
generated approximately 14% false positive predic-
tions from the test set. Moreover, the Model exhibited
a COVID-19 sensitivity of 84.6%, surpassing the per-
formance of other existing models.

The suggested methodology can potentially be a
valuable tool for healthcare professionals in manag-
ing COVID-19 because it offers the opportunity for
quantitative assessment and disease monitoring as
applications in clinical studies where our Model is
used as the first step of severity assessment and prog-
nosis prediction of COVID-19 patients. Therefore, our
system could facilitate early intervention and provide
a unified solution that helps physicians assess the
severity and track the progression of the illness.

In the future, this study could be expanded in
several aspects. To enhance the portability and
robustness of the model, training and testing could
be conducted using a larger dataset. Hierarchical
data augmentation techniques could be employed to
address the challenges posed by small datasets, and
modifications to the architecture of ECOVIDCGAN
could be implemented. For instance, changes
to loss functions and the CNN-based Generator
and Discriminator could design a comprehensive
system for automatic localization, segmentation,
and analysis of COVID-19 pneumonia lesions.
Furthermore, extending ECOVIDCGAN lesion
segmentation into a hybrid deep-learning model
for infection quantification and detecting high-risk
COVID-19 patients based on CT images and clinical
and laboratory features could be explored.
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:ECGANCOVIDةئزجتلةلاعفلاةطورشملاةیدیلوتلاةموصخلاةكبشةینب

19-دیفوكضرم

1يلعيداھءارسا.د.أ،1،2نسحنیسحنامیب

.قارعلا،لباب،لبابةعماج،تامولعملاایجولنكتةیلك،تایجمربلامسق1
.قارعلا،ةفوك،ةینقتلاطسولااتارفلاةعماج،لبابينقتلادھعملا،بوساحلاةمظنأتاینقتمسق2

ةصلاخلا

ءاحنأعیمجيفنییلاملاىلعرثؤیامم،اًیملاعاًدیدھت(SARS-CoV-2)2انوروكسوریفةمیخولاةداحلايسفنتلازاھجلاةمزلاتملكشت

قطانملاةئزجتنإفً،ادعاوًلایدبدعی(CT)بسوحملايعطقملاریوصتلاللاخنمةئرلاتاباھتلانعيللآافشكلانأنیحيف.ملاعلا

مت،يدحتلااذھةھجاوملو.ةحضاولاریغرھاظملاونیابتلاةضفخنمىودعلادودحببسبةبعصلازتلاةیعطقملاةعشلأاحئارشنمةباصملا

مدختسی.ردصللةیعطقملاروصلايفاھدیدحتوةباصملاقطانملانعفشكللECGANCOVID-Netىمسیقیمعلاملعتللجذومنحارتقا

جذومنلانوكتیو.ةیعطقملاةیبطلاروصلايفانوروكسوریفنعةمجانلاةئرلاىودعقطانمنعفشكلليللادلايمرھلاعطقلاةادأانجذومن

،كلذدعبو.ةئرلاةمحنعفشكلل،UCGAN-Net1،ةیلولأاةیبصعلاةكبشلامیمصتمت.U-CGAN-Netجذامنامھ،نیرصنعنم

UCGAN-Net،ةیناثلاةیبصعلاةكبشلالمعت نوكتت.ةقدب19-دیفوكتافآبةرثأتملاةددحملاقطانملادیدحتلنیتأزجملانیتئرلاىلع،2

مدختسی،كلذىلإةفاضلإاب.اًفَّیكمُازًیممواًدلومنمضتتيتلا(CGAN)ةطورشملاةیدیلوتلاةموصخلاةكبشنمUCGAN-Netةكبش

رھظتةحرتقملاةیجھنملانأفاشتكامت،ةفثكملابراجتلاللاخنمو.ةدودحملابیردتلاتانایبةلأسمةجلاعملتانایبلاةدایزتاینقتانجذومن

تافلآاعقوملقیقدلادیدحتلادنعانجذومنلنسحملاماعلاءادلأايفصاخلكشباذھىلجتیو.ارًخؤمةحرتقملاتاینقتلابةنراقماًقوفتمءًادأ

ھباشتلماعمعمىلعأنیطوتءادأتققحو،19-دیفوكتافآةئزجتيفاًیئانثتساءًادأةحرتقملاECGANCOVIDةكبشترھظأ.ةریغصلا

ةعومجممادختسابيجراخلاققحتللحرتقملاجذومنلاعضخ،كلذىلإةفاضلإاب.(IOU)داحتلااربععطاقتلاو%84.5ةبسنب(DSC)درنلا

.%69.7ةبسنبدرنلاھباشتلماعمىلإىدأامم،ةیئرمریغلاتانایبلا

،تافلآاوةئرلاةئزجت،(CGAN)ةیطرشلاةیدیلوتلاةموصخلاةكبش،بسوحملايعطقملاریوصتلاروص،19-دیفوكضرم:ةیحاتفملاتاملكلا

.ةیمرھلامیسقتلاةیجیتارتس
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