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Introduction 

In recent years, deep learning techniques have shown 

remarkable success in various fields of computer 

vision, particularly in image analysis and object 

detection tasks. One critical application of these 

techniques lies in the detection and mapping of road 

infrastructure from high-resolution aerial imagery. 

Obtaining a thorough evaluation of Old Mosul City's 

present road infrastructure using effective 

computational approaches is essential for the city's 

sustainable growth. Efficient and accurate 

identification of road networks is crucial for urban 

planning, disaster management, and infrastructure 

development. 

This work suggests using deep learning models for 

road detection in the conflict-ridden city of Old 

Mosul, including patch-based CNN, Dilated CNN, 

and HybridSN, in order to overcome these 

shortcomings. Deep learning techniques excel at 

object recognition tasks and can extract extremely 

complicated characteristics from unprocessed data. 

Abstract 
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comparison, CNNs leveraging spatial context alone perform worse with the best overall accuracy of 95.4% 

after post-processing. The findings demonstrate the importance of fusing spectral and spatial data within 
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In order to assess the models' generalization abilities, 

a fresh region is used for evaluation. 

This study holds immense importance due to its 

multi-faceted impact on various critical aspects. 

Urban planners and policymakers rely heavily on 

detailed road infrastructure maps to design efficient 

road networks, optimize transportation routes, and 

create sustainable urban development plans. Firstly, 

in the context of post-war reconstruction, the 

research's findings are invaluable for understanding 

the extent of damages inflicted upon the road 

infrastructure in Old Mosul City. 

The main contributions of this study include: 

1. This research compares three deep learning 

models—patch-based CNN, dilated CNN, 

and HybridSN—for identifying roadways in 

Old Mosul City, a city devastated by 

violence, using aerial data. 

2. In order to provide insight into the models' 

appropriateness for managing intricate road 

layouts in the face of urban devastation, the 

models' performance is assessed. 

3. Using the most effective method, a thorough 

road infrastructure plan of the city is created 

to support growth and reconstruction efforts 

following a war. 

The following is the arrangement of the paper's 

succeeding sections: Section 2 provides an overview 

of the previous research. The study topic and datasets 

utilized, as ll as the methodology—which includes 

data preparation, deep learning models, training, and 

assessment protocols—are all covered in depth in 

Section 3. The findings and a comparison of the 

models are presented in Section 4. Finally, Section 5 

presents the main conclusions and areas that need 

more research. 

Literature Review 

Deep Learning Techniques for Image Analysis 

Compared to traditional approaches, deep learning 

models can learn effective feature representations 

directly from the raw data in an end-to-end fashion, 

without extensive feature engineering Analysis of 

remote sensing data enables applications such as land 

cover mapping, disaster damage assessment, and 

urban planning. Remote sensing technologies have 

opened new capabilities for monitoring the Earth 

through aerial and satellite imagery. Major deep 

learning models used for remote sensing include 

Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and Generative 

Adversarial Networks (GANs). CNNs are ll-suited 

for the analysis of 2D imagery, capturing spatial 

relationships and features through convolutional 

layers1,2. RNNs are effective for sequence data, and 

temporal analysis of satellite data streams. GANs 

enable the generation of realistic synthetic imagery 

and have been used for data augmentation and 

reconstruction. 

Key applications of deep learning for remote sensing 

include land cover classification, object detection 

and localization, and change detection. Deep 

networks have achieved new state-of-the-art results 

on these tasks. Evaluating different pre-trained CNN 

models including Alex Net, VGG19, Google Net, 

and Resnet50 for multiclass land cover classification 

is done using satellite images from the UC Merced 

dataset 3. They find that ResNet50 achieves the 

highest accuracy of 99.41%, outperforming 

traditional machine learning approaches. This shows 

the power of deep CNNs to learn robust features 

from raw satellite data for accurate scene 

classification. Focus specifically on building 

recognition and segmentation from high-resolution 

satellite images4,5. They propose a modified U-Net 

architecture that combines multi-scale contextual 

information through a spatial pyramid pooling 

module. On two satellite datasets, their model 

achieves state-of-the-art performance for building 

extraction, demonstrating the efficacy of deep 

learning for fine-grained semantic segmentation 

tasks. Looking at EgyptSat-1 imagery, also validates 

deep CNNs for land cover classification, comparing 

various architectures including Alex Net, Google 

Net, and ResNet6. The ResNet model achieves over 

98% validation accuracy, once again outperforming 

traditional methods. This further supports deep 

learning as an effective approach even for the 

classification of novel satellite datasets. A study 

https://doi.org/10.21123/bsj.2024.9449
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proposed an unsupervised deep feature learning 

framework for remote sensing images7. Their 

convolutional autoencoder fusion model learns 

hierarchical feature representations without label 

supervision. Evaluations on downstream 

classification tasks confirm their unsupervised model 

achieves competitive performance versus supervised 

networks while requiring only image data8. 

These studies demonstrate that deep CNNs are 

versatile and ll-suited for diverse satellite image 

analysis tasks, including scene classification, object 

detection, semantic segmentation, and unsupervised 

feature learning. Deep learning consistently 

outperforms traditional approaches and establishes 

new state-of-the-art benchmarks. Key advantages 

include an end-to-end learning capability directly 

from imagery and an ability to capture multi-scale 

contextual relationships. As satellite data grows, 

deep learning is poised to become a vital tool for 

effectively leveraging these resources. 

Road Infrastructure Detection in Urban 

Environments 

Accurate road detection from aerial and satellite 

imagery has important applications in mapping, 

transportation planning, and navigation 

technologies. Traditional road detection relied on 

hand-crafted features and shallow machine-learning 

models. However, these approaches are limited in 

handling the variations and complexities of real-

world road patterns. With the advancement of deep 

learning, convolutional neural networks (CNNs) 

have emerged as a powerful approach for road 

detection in remotely sensed imagery. CNNs have 

achieved state-of-the-art results by learning 

hierarchical feature representations directly from the 

raw pixel data. Key advantages of deep learning 

include the ability to automatically learn robust 

features, model end-to-end from input images to 

output road detections, and capture contextual 

information through multi-scale processing. 

Different CNN architectures have been designed for 

road detection, including regional proposal networks 

for candidate generation and segmentation models 

for pixel-level classification. 

Design a multiscale residual network to combine 

local and global contexts for detecting roads9. Their 

post processing helps connect broken roads and 

reduce errors. A study proposed a multistage 

framework that jointly extracts road surfaces and 

centerlines in an end-to-end manner11. Incorporated 

directional attention and geographic features to 

improve topological road continuity4,5,7,10. A study 

presented a multi-scale, multi-task network to jointly 

optimize road detection and centerline extraction11. 

Other innovations include using generative 

adversarial networks for semi-supervised learning 

and incorporating squeeze-and-excitation blocks to 

adaptively recalibrate feature maps as in11-14. These 

papers achieve new state-of-the-art results on road 

detection benchmarks, demonstrating the advantages 

of tailored deep CNNs. Key benefits include 

effectively combining multi-scale contextual 

information, joint modeling of related tasks, and 

integration of domain knowledge into neural 

architectures. Continued research on novel deep-

learning paradigms for road detection promises 

further advances in real-world performance and 

automation. 

Challenges remain in terms of detecting small, 

occluded, or obscure roads as ll as generalizing 

across diverse geographic areas. However ongoing 

research on improving deep neural networks, 

leveraging large, annotated datasets, and using 

synthetic data holds promise for advancing road 

detection capabilities15. 

Limitations of Existing Approaches 

While deep learning has achieved impressive results 

for road detection, limitations remain with current 

approaches. A key challenge noted across several 

papers is difficulty handling small, occluded, or low-

contrast roads, leading to fragmented 

detections3,6,9,12. Complex urban environments with 

shadows, overpasses, and dense buildings also 

degrade performance11. 

Many existing methods rely on local context only, 

struggling to incorporate long-range dependencies 

and global scene layouts critical for road tracing11. 

This leads to topological errors like broken 

connections and false branches. The lack of shape 

and orientation modeling further limits the extraction 

of coherent road networks8. 

https://doi.org/10.21123/bsj.2024.9449
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Heavy reliance on large, labeled datasets is another 

barrier to real-world generalization. Collecting dense 

pixel-level annotations is costly and labor-intensive, 

motivating research into ak supervision and 

unsupervised feature learning. However, 

performance still lags supervised methods 

significantly. 

While deep learning sets a new state-of-the-art, these 

limitations need addressing to make road detection 

robust enough for practical usage across diverse 

aerial imagery. Key open challenges include better 

modeling, long-range dependencies, integrating 

topological constraints, and reducing annotation 

requirements. Advances on these fronts will move 

road detection from academic benchmarks toward 

real-world viability. 

 

Materials and Methods 

Data Collection and Preprocessing 

Source of High-Resolution Aerial Imagery 

Image Pre-processing 

The raw aerial imagery and ground truth masks are 

loaded using Rasterio and normalized by dividing by 

the maximum pixel value to rescale between 0-1. 

Overlapping patches are extracted from the imagery 

and masks by sliding a fixed-size window across the 

images. A margin is first added via zero padding to 

enable patch extraction at the borders. Patches are 

sampled with a 50% overlap between adjacent 

patches for dense coverage. The patch size is set to 

3x3 pixels based on empirical evaluation of model 

performance. To address class imbalance with far 

fewer roads than background patches, random 

oversampling is applied to the road class. The 

number of background patches is subsampled to 

match the oversampled road patches. The sampled 

patches and corresponding binary road/background 

labels are concatenated into tensors ready for model 

training and evaluation. Categorical conversion is 

applied to convert the binary labels into one-hot 

encoded labels. This pre-processing provides a 

patch-based representation to train the CNN models. 

The sampling and augmentation help mitigate class 

imbalance. Small patches allow the CNNs to focus 

on local textures and patterns for road/background 

differentiation. 

 Ground Truth Annotation for Road 

Infrastructure 

Accurate ground truth data is essential for training 

and evaluating road extraction models. Ground truth 

labels re-created by manually digitizing roads based 

on visual interpretation of the high-resolution RGB 

aerial imagery. Sampling focused on representing the 

diversity of road types present across the study area. 

A systematic random sampling approach was used 

for collecting 50 m x 50 m sites distributed across 

urban and suburban neighborhoods. Within each site, 

all visible road segments and associated attributes re 

digitized to generate polygon annotations. Roads re 

differentiated into major roads, secondary streets, 

minor roads, lanes, and alleys based on observed 

width, connectivity, and context.  

Annotation was performed in ArcGIS Pro. Quality 

control involved reviewing the sites for accuracy 

assessment. The pixel-level segmentation masks re 

generated by rasterizing the polygon annotations. In 

total, 1868055 pixels comprising over 16.6 km of 

annotated road length re collected across diverse 

neighborhoods to form the ground truth training and 

evaluation dataset. 

Overview of Deep Learning Models 

Patch-Based Convolutional Neural Network 

(CNN) 

A simple CNN architecture is developed for patch-

level road extraction. The model takes small fixed-

size image patches as input and outputs predicted 

roads for each patch. CNN consists of convolutional, 

pooling, and fully connected layers designed to learn 

hierarchical feature representations for the input 

imagery. The first layer is a 2D convolutional layer 

with 8 filters of size 2x2. This extracts low-level 

features like edges and textures within each 2x2 

neighborhood. Rectified linear unit (ReLU) 

activation introduces non-linearity. Next, a flattened 

layer reshapes the feature maps into a single 1D 

vector per patch to prepare for fully connected 

processing. This is followed by a dense layer with 16 

https://doi.org/10.21123/bsj.2024.9449
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units and ReLU activation to learn higher-level 

feature representations. The final layer is a SoftMax 

output layer for binary land cover classification. The 

model is compiled with categorical cross-entropy 

loss to optimize classification accuracy. Overall, this 

compact CNN architecture aims to learn 

discriminative patch-level features relevant to 

distinguishing between the target land cover classes. 

During training, the model parameters are updated 

through backpropagation to minimize the loss. 

Evaluation of hold-out test patches helps assess 

generalization performance for predicting the land 

cover class from new imagery. 

A deeper CNN architecture was also developed with 

additional convolutional and dense layers compared 

to the simple CNN. The input is image patches of 

fixed size like the simple CNN. The first layer is a 

2D convolutional layer with 8 filters of size 2x2, 

followed by a second convolutional layer with the 

same parameters. Each convolution uses ReLU 

activation. Stacking two convolutional layers allows 

learning hierarchical feature representations, with 

the first layer detecting low-level features like edges, 

and the second layer building on those to identify 

higher-level patterns. Next, a flattened layer reshapes 

the feature maps into a 1D feature vector. This is fed 

into a fully connected dense layer with 16 units and 

ReLU activation to learn non-linear combinations of 

the CNN features. A dropout layer with a rate of 0.2 

follows, randomly setting input units to zero during 

training to prevent overfitting. Then another dense 

layer with 32 units and ReLU activation learns 

higher-level abstract features for classification. The 

final layer is a SoftMax output layer for binary land 

cover classification. Like the simple CNN, 

categorical cross-entropy loss and the Adam 

optimizer are used during model training to minimize 

loss show in Fig. 2. 

 
Figure 2. The typical architecture of shallow CNN model for road extraction. 

Dilated CNN 

A dilated CNN architecture is developed for road 

extraction from aerial imagery. Dilated convolutions 

enable expanding the receptive field of filters to 

aggregate multi-scale contextual information 

without loss of resolution. The model uses a stack of 

dilated convolutional layers. The first layer has 8 

filters of size 2x2 with a dilation rate of 1x1 i.e., no 

dilation. This extracts low-level features within the 

2x2 neighborhood. The second dilated convolution 

layer also has 8 filters but with a dilation rate of 2x2. 

This doubles the receptive field to 4x4 to capture a 

larger spatial context. ReLU activation is applied 

after each convolution to introduce non-linearity. A 

flattened layer then reshapes the feature maps into a 

1D vector to prepare for fully connected processing. 

This is followed by two dense layers with 16 and 32 

units respectively to learn higher-level feature 

representations. Dropout with a rate of 0.2 is used 

after the first dense layer for regularization. The final 

layer is a softmax output for binary land cover 

classification. The model is compiled with 

categorical cross-entropy loss and uses the Adam 

optimizer. By stacking dilated convolutions to 

sequentially expand the receptive field, this CNN 

architecture is designed to aggregate multi-scale 

contextual information relevant to land cover 

classification, while maintaining high resolution. 

The model is trained end-to-end from imagery to 

minimize the loss and output predicted land cover 

maps show in Fig. 3. 

https://doi.org/10.21123/bsj.2024.9449
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Figure 3. The impact of dilation rate on extracting features in CNN models. 

Hybrid Spectral Network (HybridSN) 

The HybridSN model implements a convolutional 

neural network that jointly processes spectral and 

spatial features for road extraction. The input is 3D 

patches consisting of 2D spatial regions and 1D 

spectral signatures. The first layer is a 3D 

convolution with 8 filters of size 2x2x2, followed by 

another 3D conv layer with 16 filters. The 3D conv 

layers enable learning joint spectral-spatial features. 

ReLU activation is applied after each conv layer. The 

feature maps are then reshaped into a 2D 

representation, stacking the spectral channels to form 

the second dimension. This compact representation 

maintains the joint feature learning while reducing 

parameters. A 2D convolution with 8 1x1 filters is 

applied to further fuse features across the spectral 

dimension. A flattened layer then condenses the 

features into a 1D vector to feed into fully connected 

processing. Two dense layers with 32 and 16 units 

respectively and ReLU activation learn higher-level 

feature representations. Dropout with a rate of 0.4 is 

used after each dense layer for regularization. The 

final layer is a SoftMax output for road detection. 

The HybridSN model is trained end-to-end using 

categorical cross-entropy loss and the Adam 

optimizer to minimize loss show in Fig. 4. 

 
Figure 4. The architecture of the HybridSN model for road extraction. 

Training Setup or Parameters 

The models are implemented in TensorFlow and 

trained on an NVIDIA RTX 2060 GPU. The Adam 

optimizer is used with a learning rate of 0.001 and 

default parameters. Categorical cross-entropy loss is 

optimized during training. The batch size is set to 

5000 patches. Models are trained for 100 epochs with 

early stopping if the validation loss does not improve 

for 5 consecutive epochs.  80% of the dataset is used 

for training and validation with a 90/10 split. The 

remaining 20% is held out for testing model 

generalization. All hyperparameter tuning is 

https://doi.org/10.21123/bsj.2024.9449
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performed based on the validation set. Table 1 

presents the parameters of the models. 

 

Table 1. The key parameters of the CNN models defined in the methods. 

Model Layers Activations Regularization Other Parameters 

Simple 

CNN 

2 Conv2D, 2 Dense ReLU None Conv2D: 8 filters, 2x2 kernel, Dense: 16 units 

Complex 

CNN 

2 Conv2D, 1 Flatten, 

3 Dense, 1 Dropout 

ReLU Dropout (0.2) Conv2D: 8 filters, 2x2 kernel, Dense: 16, 32 

units, Dropout: 0.2 rate 

HybridSN 2 Conv3D, 1 

Reshape, 1 Conv2D, 

2 Dense, 2 Dropout 

ReLU Dropout (0.4) Conv3D: 8, 16 filters, 2x2x2 kernel, Conv2D: 

8 filters, 1x1 kernel, Dense: 32, 16 units, 

Dropout: 0.4 rate 

Dilated 

CNN 

1 Dilated Conv2D, 1 

Conv2D, 2 Dense, 1 

Dropout 

ReLU Dropout (0.2) Dilated Conv2D: 8 filters, 2x2 kernel, (1,1) 

dilation, Conv2D: 8 filters, 2x2 kernel, 

Dense: 16, 32 units, Dropout: 0.2 rate 

 

Evaluation Metrics 

Model performance is evaluated on the held-out test 

set. The primary metric is the overall classification 

accuracy, computed as the percentage of correctly 

classified patches. Additionally, class-wise 

precision, recall, and F1-score are calculated to 

assess performance in each individual class. The 

mean class accuracy across all classes is also 

reported to account for class imbalance. Runtime is 

assessed by recording model inference time per patch 

on the GPU hardware. The tradeoff between 

accuracy and computational efficiency is analyzed. 

 

Results and Discussion 

Performance of Models 

The Shallow CNN  

The Shallow CNN model achieves decent 

performance for road extraction prior to post-

processing, with an overall accuracy of 86.4% and 

IoU of 64.0%. However, it struggles with some false 

positives and disconnected road predictions as 

evidenced by the higher precision (86.4%) compared 

to recall (63.3%). Qualitatively on the output map, 

can observe some errors in predicting background 

regions as roads. The model fails to capture the finer 

details and continuity of the road network structure. 

There are several broken road segments and 

extraneous branches. After applying post-

processing, the accuracy and IoU increase 

substantially to 96.0% and 76.3% respectively. This 

indicates that post-processing can correct many of 

the topological artifacts and false positives. The 

recall sees a significant improvement to 96.5%, 

suggesting the post-processing is effective in 

connecting and completing the road network 

predictions. However, precision drops to 76.3%, 

which points to some over-correction introducing 

new false positives. Overall, the post-processed map 

looks much cleaner visually with the road layout 

clearly delineated. But there may still be minor 

disconnections or extensions from the ground truth. 

In summary, the shallow CNN lacks sufficient 

capacity to model road topology and structure. Post-

processing helps improve the predictions 

considerably but cannot fully recover from the model 

limitations. Further architecture enhancements are 

likely needed to improve contextual understanding 

and obtain connectivity-aware road extraction show 

in Fig. 5. 
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Figure 5. The results of road extraction using shallow CNN and its training curve. 

Deep CNN 

The Deep CNN achieves slightly better performance 

than the Shallow CNN before post-processing, with 

overall accuracy of 86.1% and IoU of 65.0%. The 

higher model capacity allows it to learn more 

discriminative features, improving recall to 65.9% 

compared to the Shallow CNN. However, similar 

issues are observed with fragmented road predictions 

and topological errors. Precision remains higher than 

recall, indicating continued difficulty handling false 

positives. Qualitatively,  can see that Deep CNN also 

struggles with disconnected roads and spurious 

branches. Applying post-processing once again 

significantly boosts the scores, with accuracy rising 

to 95.4% and IoU to 74.0%. The large gain in recall 

to 96.8% shows that post-processing can connect 

most of the broken road sections. But precision drops 

to 74.0%, suggesting that while connectivity is 

improved, over-correction causes new false positive 

branches. Visually the road layout looks cleaner but 

some deviations from the ground truth remain. 

Overall, while the Deep CNN extracts roads better 

than the Shallow CNN before post-processing, it 

does not resolve the underlying limitations around 

capturing spatial context and road topology. The 

post-processing offers substantial improvements but 

cannot fully overcome the core model limitations. 

Additional architectural enhancements are still 

needed to build connectivity and shape awareness of 

the model itself show in Fig. 6. 

https://doi.org/10.21123/bsj.2024.9449
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Figure 6. The results of road extraction using deep CNN and its training curve. 

Dilated CNN 

The Dilated CNN performs slightly worse than the 

previous CNNs prior to post-processing, with an 

overall accuracy of 84.8% and IoU of 65.5%. The 

lower precision of 81.2% indicates it struggles more 

with false positives compared to the other models. 

This is likely because the dilated convolutions 

aggregate information from a larger receptive field 

which can be excessive for small road objects. The 

context is not sufficiently localized. Visually the raw 

Dilated CNN output is noisier with more background 

regions falsely detected as roads. The larger 

receptive field causes it to mistake similar textures 

for roads. After post-processing, accuracy and IoU 

improved to 93.7% and 67.5% respectively. The 

recall sees a huge boost to 95.2%, showing that post-

processing can connect most of the fragmented 

predictions. But precision drops significantly to 

67.5%, much lower than the other models, pointing 

to more false positives. Indeed, the post-processed 

output still shows some of the same artifacts as the 

raw output. The precision-recall gap remains very 

large, indicating poor discrimination between roads 

and backgrounds. In summary, the dilated 

convolutions do help capture useful contextual 

information. However, the model finds it difficult to 

localize and precisely extract the roads, resulting in 

noisier outputs. A more tailored design is likely 

needed to tighten the receptive fields and focus on 

road-specific patterns show in Fig. 7. 
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Figure 7. The results of road extraction using dilated CNN and its training curve. 

 

HybridSN 

The HybridSN model achieves the best performance 

before post-processing compared to the previous 

CNN architectures, with an overall accuracy of 

87.1% and IoU of 83.4%. This demonstrates the 

benefits of jointly modeling spectral and spatial 

features. The recall is high at 80.3% indicating the 

model can detect most road pixels. Precision is also 

very good at 90.6%, showing the model can 

discriminate roads from the background effectively 

with few false positives. Visually, the raw HybridSN 

output has very clean road detection with minimal 

noise or disconnected segments. The joint spectral-

spatial processing provides strong cues to 

differentiate road texture and materials. After post-

processing, the accuracy and IoU increase further to 

96.9% and 80.6% respectively. The recall sees a 

small boost to 98.2%, indicating most roads are 

already ll captured before post-processing. Precision 

drops slightly to 80.6%, suggesting some over-

smoothing or border effects from the post-processing 

that reduce localization accuracy. Nonetheless, the 

gap between precision and recall is much smaller 

compared to the other models. Overall, the 

HybridSN effectively leverages both spectral and 

spatial patterns to achieve highly accurate and ll-

delineated road extraction even without post-

processing. The results highlight the benefits of joint 

spectral-spatial feature learning, particularly for 

localization and material-aware segmentation show 

in Figs. 8 and 9. 
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Figure 8. The results of road extraction using HybridSN and its training curve. 

 

 
Figure 9. The detected road network in the study area using HybridSN. 

Comparative Analysis of Models 

Overview 

The HybridSN model achieves the best road 

extraction performance with and without post-

processing. The joint spectral-spatial processing 

provides strong cues to differentiate road texture and 

materials. This enables accurate localization and 

delineation of roads with fewer disconnected 

segments or false positives. The dilated CNN 

https://doi.org/10.21123/bsj.2024.9449
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performs the worst before post-processing due to the 

larger receptive field causing confusion between 

roads and similar background textures. However, it 

seems the biggest gain with post-processing since the 

topological corrections can link many of the 

fragmented predictions. The Shallow and Deep 

CNNs achieve comparable results, with the Deep 

CNN having a small edge from higher capacity. But 

both struggle with false positives and road 

discontinuities without post-processing. The gaps 

between precision and recall highlight issues with 

localization accuracy. Across all models, post-

processing leads to significant improvements in 

recall and connectivity of roads, but often at the 

expense of reduced precision. This points to core 

limitations in contextual and topological modeling 

that cannot be fully overcome through post-

processing. Overall, the HybridSN demonstrates the 

importance of using both spectral and spatial context 

to differentiate road appearance for accurate 

extraction. The other models may benefit from more 

explicit encoding of topological and shape 

constraints within the network architecture itself. 

Detailed Comparison  

Table 2 presents the performance of the proposed 

models. The Shallow CNN demonstrates relatively 

good performance in road extraction. Without post-

processing, it achieves an OA of 0.864, indicating a 

high level of accuracy in classifying road pixels. 

However, it shows limitations in capturing the fine 

details of roads, as reflected by its lower Kappa 

coefficient (0.713). When post-processing is applied, 

the OA improves significantly to 0.960, with a higher 

Kappa coefficient of 0.843. This suggests that post-

processing enhances the model's ability to refine road 

predictions, resulting in more accurate and consistent 

results. The strengths of this model include high OA 

and F1-score after post-processing, indicating 

improved performance, and efficient architecture 

with faster training and inference times. However, 

the model is limited in capability to capture fine road 

details, leading to a lower Kappa coefficient. The 

model also struggles with complex road patterns. 

The Deep CNN model also demonstrates strong 

performance in road extraction. Like the Shallow 

CNN, the model's OA increases significantly with 

post-processing, from 0.861 to 0.954. The F1-score 

is relatively high even without post-processing 

(0.853), indicating good precision and recall. 

However, the Kappa coefficient is lower compared 

to the post-processed results. The strengths of this 

model include high OA and F1-score after post-

processing, showcasing the model's potential for 

accurate road extraction. Reasonable performance 

even without post-processing, indicates a ll-designed 

architecture. However, the model has a lower Kappa 

coefficient which implies some inconsistencies in 

predictions that post-processing helps address. 

The Dilated CNN exhibits a moderate performance 

in road extraction. Without post-processing, it 

achieves an OA of 0.848, slightly lower than the 

Shallow and Deep CNNs. The model's F1-score is 

relatively high (0.812), indicating a balanced trade-

off between precision and recall. However, the 

Recall is comparatively lower, suggesting potential 

challenges in correctly identifying all road pixels. 

Post-processing significantly improves the results, 

with an OA of 0.937 and a higher Kappa coefficient 

of 0.770. The strengths are (1) reasonable F1-score 

after post-processing, indicating a balanced 

performance between precision and recall, and (2) 

improved performance with post-processing, 

showcasing the model's adaptability to refinement 

techniques. The model is limited to relatively lower 

Recall without post-processing, which may lead to 

missed road segments. 

The HybridSN model demonstrates the highest 

performance among the evaluated models for road 

extraction. Even without post-processing, it achieves 

a commendable OA of 0.871, which is higher than 

other models without post-processing. Its F1-score is 

also impressive at 0.906, indicating a ll-balanced 

precision and recall. After post-processing, the OA 

significantly increases to 0.969, showcasing the 

model's compatibility with post-processing 

techniques. This model has high OA and F1-score 

without post-processing, reflecting the model's 

ability to accurately extract roads, and excellent 

overall performance, even compared to other models 

after post-processing. Although high, the Recall and 

Precision could still be improved, as seen from the 

post-processed results. 

When comparing the models, observe that post-

processing consistently improves their performance, 
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enhancing OA and Kappa coefficients across the 

board. The HybridSN model stands out with the 

highest OA and F1-score, indicating its superiority in 

road extraction. However, it's important to note that 

post-processing benefits all models, potentially 

leveling the playing field to some extent. Each model 

has its strengths and aknesses. The Shallow CNN and 

Deep CNN demonstrate respectable performance but 

may struggle with capturing fine road details. The 

Dilated CNN performs moderately ll but exhibits 

room for improvement in Recall. The HybridSN 

outperforms others but can still be optimized for 

better Recall and Precision. 

Table 2. Performance assessment of different models for road extraction. 

Model Post-processing OA Kappa Recall Precision F1-score IoU 

Shallow CNN 
No 0.864 0.713 0.633 0.864 0.730 0.640 

Yes 0.960 0.843 0.965 0.763 0.852 0.763 

Deep CNN 
No 0.861 0.723 0.659 0.853 0.743 0.650 

Yes 0.954 0.824 0.968 0.740 0.838 0.740 

Dilated CNN 
No 0.848 0.720 0.602 0.812 0.691 0.655 

Yes 0.937 0.770 0.952 0.675 0.789 0.675 

HybridSN 
No 0.871 0.813 0.803 0.906 0.851 0.834 

Yes 0.969 0.875 0.982 0.806 0.885 0.806 

 

Training Time 

The training time per epoch provides insights into the 

computational complexity and efficiency of the 

different models (Table 3). The Shallow CNN has 

the fastest training time at 5.3 seconds per epoch. 

This is expected as it has the simplest architecture 

with fewer layers compared to the other models. The 

low training time makes it more suitable for quick 

prototyping and iteration during development. The 

Deep CNN takes 15 seconds, nearly 3x longer than 

the Shallow CNN. The increased depth and 

parameters lead to higher computational costs for the 

forward and backward passes during training. The 

Dilated CNN requires 17 seconds per epoch. The 

dilated convolutions increase the receptive field for 

aggregating broader context but add computational 

overhead. Finally, the HybridSN model takes the 

longest at 20 seconds per epoch. Jointly processing 

the spectral and spatial data in 3D convolutional 

layers adds substantial computation. The spectral 

modeling also increases the input feature 

dimensionality compared to 2D spatial-only 

CNNs.Overall, the training times reflect model 

complexity in terms of depth, parameters, and 

input/feature dimensionality. There are clear 

tradeoffs between model performance and 

efficiency. The RTX 2060 GPU provides sufficient 

computing power to train the models in a reasonable 

time frame. The training times help guide appropriate 

model selection based on the application constraints 

and priorities. 

Table 3. Training time of different models for 

road extraction. 

Model Training Time (seconds/epoch) 

Shallow CNN 5.3 

Deep CNN 15 

Dilated CNN 17 

HybridSN 20 

 

Discussions 

The Importance of New Ideas in Study 

Previous studies have extracted roads that contain 

constant shapes and measurements or parameters, 

while this study has extracted twisted and variable 

methods of measurement, which have been 

somewhat difficult. The results demonstrate that the 

proposed model was more efficient for road 
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extraction. Additionally, data augmentation 

procedures were employed to effectively increase the 

size of the dataset. An encoder–decoder SegNet 

model was used for the generative part to generate a 

high-resolution segmentation map16. The accuracy 

that they achieved for recall, precision, and F1 score 

was 91.01%, 88.31%, and 89.63%, respectively, 

which shows the superiority of the proposed model 

for road extraction. 

Factors Affecting Model Performance 

Several key factors that significantly influence the 

performance of road extraction models in this 

challenging task have emerged from the comparative 

evaluation. Firstly, the size of the receptive field 

plays a crucial role. The dilated CNN, with its larger 

receptive field, struggled with precision, as it tended 

to mistake background regions for roads. This 

highlights the importance of incorporating more 

localized context modeling to focus on road-specific 

spatial patterns and textures effectively. Secondly, 

the HybridSN model, which leveraged both spectral 

and spatial cues, achieved superior accuracy and 

localization compared to CNNs that only utilized 

spatial context. This demonstrates the importance of 

joint spectral-spatial modeling and multi-modal data 

fusion for enhancing road extraction results. Thirdly, 

the capacity of the model also impacts its 

performance. The Deep CNN, with its greater 

capacity and ability to learn deeper hierarchical 

feature representations, outperformed the Shallow 

CNN. This emphasizes the benefits of having 

sufficient model capacity to capture intricate road 

features. However, it is essential to note that merely 

increasing depth alone did not fully address the 

underlying challenges of road extraction. Fourthly, 

all CNN models faced difficulties in producing 

continuous and connected road predictions, 

indicating a lack of explicit topological modeling in 

their architectures. Although post-processing 

techniques helped improve connectivity, they came 

at the cost of reduced precision. Therefore, there is a 

need to incorporate topological modeling within the 

architectures to address fragmented road predictions 

more effectively. Finally, end-to-end learning proved 

advantageous in the case of the HybridSN model, as 

it could directly predict roads from pixels without 

heavily relying on post-processing corrections. This 

highlights the importance of incorporating more 

inductive bias into models to build topological and 

contextual awareness directly into their architecture. 

Challenges in Road Infrastructure Detection 

Road extraction from overhead imagery poses 

numerous complex challenges that push the 

boundaries of remote sensing capabilities. One of the 

primary hurdles is dealing with the diverse and 

intricate appearance of roads. They come in various 

materials, textures, widths, orientations, and 

topological structures, making it essential for models 

to learn robust and expressive features that can 

effectively capture this wide variability and 

generalize ll. Another significant challenge is 

occlusions caused by various objects like trees, 

buildings, and vehicles, which frequently obscure 

parts of the roads. These masking and incomplete 

observations hinder the detection process and require 

the modeling of longer-range dependencies to enable 

accurate road detection even in obstructed areas. 

Furthermore, the presence of small targets, such as 

narrow roads, lanes, and sidewalks, adds complexity 

to the extraction task. Given the limited number of 

pixels occupied by these narrow road segments, 

precise localization at higher resolutions is crucial. 

Models must be equipped to accurately identify and 

delineate these small road features. Background 

confusion is yet another obstacle in road extraction. 

Many background classes, such as parking lots, 

buildings, and trails, share visual cues similar to 

roads, leading to false positives in the results. It is 

essential for the models to perform discriminative 

learning of fine-grained differences to avoid 

misclassifications between roads and visually similar 

background elements. Moreover, the topological 

relations between different road segments pose a 

challenging problem. Roads form an interconnected 

network with dependencies and constraints between 

various parts. Effectively modeling these complex 

topological relationships remains a daunting task for 

road extraction algorithms. The broader scene 

context, including terrain, land use, and 

socioeconomic factors, significantly influences road 

patterns and can aid in road detection. However, 

incorporating this context effectively into models is 

a complex and ongoing research problem that 

requires innovative approaches. A key obstacle to 
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developing accurate road extraction models lies in 

the availability of suitable training data. Supervised 

learning for road extraction demands pixel-level 

annotated road data, which is both labor-intensive 

and time-consuming to collect and annotate. Despite 

available datasets, there may still be a lack of 

diversity in road types and conditions, which can 

limit the model's ability to generalize to various 

scenarios. 

Practical Applications of the Developed Models 

The models' applications in road extraction from 

overhead imagery are diverse and have the potential 

to revolutionize various domains. One significant 

application is Transportation Planning, where 

precise road network maps play a crucial role in 

analyzing transportation connectivity. These maps 

help identify gaps, redundancies, and opportunities 

for new infrastructure development, providing 

valuable support for urban planning initiatives. 

Navigation applications also benefit greatly from up-

to-date road maps generated by these models. In-car 

GPS, ride-sharing platforms, and autonomous 

vehicles can use these maps to plan optimal legal 

routes, leading to improved routing algorithms and 

more efficient navigation experiences for users. 

During Emergency Response scenarios, the rapid 

mapping of roads using aerial imagery becomes 

critical. The models enable the quick coordination of 

evacuations, deliveries, and deployment of 

responders by optimizing travel routes in disaster-

affected areas, aiding in timely and effective 

emergency response efforts. Population Mapping is 

another valuable application where road layouts 

provide insights into population distribution and land 

use patterns. This information can be used to target 

infrastructure and services effectively, leading to 

better resource allocation and development planning. 

For Development Monitoring, the ability to 

repeatedly map roads over time becomes essential. 

These models can detect newly constructed roads in 

rapidly growing areas, facilitating the tracking and 

monitoring of development progress. In Military 

Operations, analyzing road networks becomes vital 

for armed forces. It provides key logistical 

intelligence, helping in the coordination of 

movements for personnel and supplies, ultimately 

enhancing military operations' efficiency and 

effectiveness. Additionally, Automated Mapping 

using these models allows for accurate and scalable 

road mapping. This approach efficiently leverages 

large volumes of aerial data, ensuring that maps 

remain up-to-date and reflective of real-world road 

infrastructure changes. 

Potential Improvements in Urban Planning and 

Development 

The applications of advanced AI techniques for road 

extraction offer valuable insights and data for 

evidence-based infrastructure planning. One notable 

benefit lies in Informed Infrastructure Planning, 

where precisely mapped road networks aid in 

identifying neighborhoods lacking connectivity to 

essential destinations like employment centers. This 

information can guide targeted infrastructure 

investments and the formulation of policies that 

promote equitable growth, ensuring better 

accessibility for all residents. Moreover, detailed 

road information allows for optimized land use 

analyses, helping to understand transportation 

capacity and travel patterns. This, in turn, informs 

complementary land use planning, such as 

densification along transit corridors and the 

promotion of mixed-use development, leading to 

more efficient and sustainable urban development. 

The automated mapping of new and informal roads 

in rapidly growing regions contributes to Cost-

Effective Expansion strategies. By identifying areas 

that require upgrades and expansions, urban planners 

can maximize the returns on infrastructure 

investments, making the most of limited resources in 

developing areas. Sustainable Development 

initiatives can benefit from monitoring long-term 

road network changes. By evaluating the impacts of 

sustainable transportation policies like transit-

oriented development, urban sprawl can be curbed, 

leading to more environmentally friendly and 

resilient cities. Resilience Planning is another crucial 

application re updating road maps before and after 

disasters prove invaluable. This facilitates damage 

assessments and helps in planning redevelopment 

strategies, enhancing the resilience of critical 

transportation networks, and improving disaster 

response. 

The automation of road extraction using deep 

learning analysis of regularly collected aerial 
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imagery brings the advantage of Scaling. Frequent 

large-scale assessments of road infrastructure 

become possible, enabling dynamic, data-driven 

urban planning and development processes. 

Conclusion 

This study presented a comparative evaluation of 

deep learning models for extracting road 

infrastructure from aerial imagery. The evaluated 

models included CNNs, dilated CNNs, and a hybrid 

spectral-spatial network. Experiments demonstrated 

that the hybrid network integrating both spectral and 

spatial processing achieved the highest accuracy and 

intersection-over-union score of 96.9% and 80.6% 

respectively after post-processing. The joint 

modeling of spectral and spatial cues enabled precise 

localization and delineation of roads. While all 

models benefited from topological improvements of 

post-processing, they struggled with false positives 

and disconnected predictions indicating limitations 

in contextual modeling. The results highlight the 

importance of multi-modal data fusion and encoding 

domain knowledge of road topology into network 

architectures. 

This research makes several significant contributions 

to the field of road extraction from overhead 

imagery. Firstly, it demonstrates the superiority of 

joint spectral-spatial modeling over spatial-only 

methods for achieving accurate road extraction. By 

leveraging both spectral and spatial cues, the 

proposed approach outperforms existing methods 

and highlights the importance of incorporating multi-

modal data fusion for improved results. Secondly, 

the research provides valuable quantitative 

benchmarking of different deep-learning 

architectures specifically tailored for road detection. 

This comparative analysis sheds light on the 

strengths and aknesses of each model, enabling 

researchers and practitioners to make informed 

choices based on the specific requirements of their 

applications. Furthermore, the study thoroughly 

investigates the relative impacts of various factors on 

road extraction performance. These factors include 

receptive field sizes, model capacities, and 

topological constraints. By analyzing their effects, 

the research offers insights into how to design and 

fine-tune deep learning models for optimal road 

extraction results. Lastly, the research provides 

compelling evidence for the importance of end-to-

end learning that integrates multi-modal cues and 

domain knowledge directly into the models. This 

approach proves superior to relying solely on post-

processing techniques for refining predictions. By 

incorporating inductive biases and contextual 

awareness during the learning process, the proposed 

method achieves better accuracy and efficiency in 

road extraction tasks. 

Many areas might be revolutionized by the models' 

broad uses in road extraction from aerial photos. 

Accurate road network maps are essential for 

assessing transportation connections in one 

important use, which is transportation planning. 

Urban planning activities benefit greatly from the 

identification of gaps, redundancies, and potential 

for future infrastructure development that these maps 

serve to provide. 

Future work should explore incorporating 

topological priors and constraints directly into 

network architectures to improve connectivity 

modeling. Hybrid spatial-spectral networks could 

also be enhanced to learn scale-adaptive features 

across multiple input resolutions. akly supervised 

and semi-supervised learning paradigms provide 

opportunities to improve generalizability and relax 

annotation requirements. Architectural search could 

help automate learning specialized designs tailored 

for road extraction tasks. More powerful deep 

learning frameworks offer abundant opportunities to 

advance the state-of-the-art in automated mapping of 

transportation infrastructure from overhead imagery. 
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 باستخدام القديمة الموصل مدينة في للطرق التحتية البنية عن للكشف( CNN) العميق التعلم

 الدقة عالية الجوية الصور

 2علياء عباس العطار، 1، منتظر عيدي شريف1رحمنمصطفى عصمت عبدال

 1قسم تقنيات هندسة المساحة، الكلية التقنية الهندسية، الجامعة التقنية الشمالية، كركوك، العراق.
 ، العراق.الموصلالجامعة التقنية الشمالية، 2

 

 ةالخلاص

 عديدة بسبب تحديات يطرح ولكنه التطبيقات لمختلف الأهمية بالغ أمرًا الجوية الصور من للطرق التحتية للبنية دقيقة خرائط رسم يعد

 يتم. العامة البيانات من الي بشكل الطرق لاستخراج العميق التعلم تقنيات في البحث هذا يبحث. الحقيقي الواقع في الطرق أنماط تعقيد

 بين تجمع التي( HybridSN) الهجينة المكانية الطيفية الشبكة ذلك في بما( CNN) التلافيفية العصبية الشبكات بنى من العديد تقييم

 أرضية حقيقة علامات باستخدام الحضرية الجوية الصور من بيانات مجموعة على النماذج تقييم يتم. الليدار وبيانات البصرية للصور

% 80.6و% 96.9 تبلغ إجمالية بدقة أداء أعلى والمكانية يفيةالط المعالجة من كلاً  يدمج الذي HybridSN ويحقق. الليدار تقنية من مشتقة

. عالية بدقة وتحديدها الطريق أجزاء تحديد إمكانية الوسائط متعددة للإشارات المشتركة النمذجة تتيح. اللاحقة المعالجة عدب  التقاطع من

 المعالجة بعد% 95.4 تبلغ إجمالية دقة أفضل مع أسوأ أداءً  تؤدي وحده المكاني السياق من تستفيد التي CNN شبكات فإن وبالمقارنة،

 والمكانية الطيفية البيانات دمج أهمية على يدل وهذا. المتماسكة الطرق شبكات استخراج في قصور أوجه النماذج جميع تظهر. اللاحقة

 الاستشعار أجهزة خلال من الخرائط أحدث لتطوير المتاحة الفرص على الضوء النتائج تسلط. الطرق لاستخراج العميق التعلم أطر ضمن

 والحفاظ العميق التعلم مع الوسائط متعددة الجوية للبيانات الآلي بالتحليل يقوم. أقوى طوبولوجي وعي ذات عصبية بنى وتصميم الهجينة

 .المدن نطاق على للنقل الحيوية التحتية للبنية حديثة جرد قوائم كفاءة على

 .مدينة الموصل القديمة ،البنية التحتية للطرق ،كشف الطرق ،التعلم العميق ،CNN الكلمات المفتاحية: 

https://doi.org/10.21123/bsj.2024.9449
https://doi.org/10.1109/IVS.2019.8814000
https://doi.org/10.1109/ACCESS.2017.2773142

