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Introduction 

The concept of dependency is an important tool in 

modeling joint distributions between variables. 

Nevertheless, one of the most important problems 

associated with modeling multivariate functions is 

the existence of dependencies between observations 

of the variables of the phenomenon under study. 

Copula functions are very useful tools for analyzing 

dependencies between random variables. For the 

strong boundary effects, the copula density estimator 

was used according to Sklar's theorem 1. Copulas are 

quickly becoming popular as multivariate data 

modeling tools.   

Many studies have been published by researchers to 

help develop ideas for modeling dependency 

measures in many fields, especially the challenges 

encountered during the analysis, such as problems of 

association between study variables and problems of 
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boundary effects. Therefore, attention was paid to 

background reviews and literature reviews to help 

prepare the research and the conclusions reached by 

the researchers who played a role in enriching the 

research topic. 

There are numerous researchers who use copula in 

insurance and risk management 2,3. Copula functions 

can be a useful tool for analyzing the relationships 

between random variables 4,5. 

Several methods have been proposed to handle 

copula estimation. Nonparametric tests of 

independence for many bivariate and multiple 

variables by highlighting the empirical size and 

properties of the power in many previous small 

samples based on copulas, and through the results of 

the test in small variables, he demonstrated that there 

are nonparametric dependence structures between 

the variables of the phenomenon studied                                                                                                                              
6. Mohammadi et al. proposed two semiparametric 

methods to estimate the copula parameter 7. This 

method is based on the minimum alpha divergence 

between the nonparametric estimate of copula 

density using the local probit transformation method 

and the true copula density function by relying on 

simulation experiments to measure the performance 

of these methods based on the Hellinger distance and 

Niemann divergence. The results show that the 

method based on Hellinger distance estimation has 

good performance in small sample sizes and weak 

dependency cases. It is then demonstrated by 

applying parameter estimation methods to a real data 

set in hydrology. Hmood and Hamza  presented four 

nonparametric methods to estimate the copula 

density based on the kernel density function after 

applying simulation experiments on samples of 

different sizes at two levels of high and low 

reliability for four types of copula 8. Comparisons 

between methods were performed using the 

integrated mean squared error. Simulation results 

show that the kernel transformation estimation 

method is the best among the methods used, and the 

copula is found to be a very flexible model, 

especially for high Gaussian dependencies. In 

addition, many researchers have studied wavelets. 

Jawad and Abdullah  studied the wavelet properties 

of a series of sunspots 9. A continuous wave analysis 

of the series was performed. To increase accuracy, 

the series was divided into its approximate and 

detailed coefficients using fixed and non-fixed 

thresholds. They explained that there is an 

irregularity in the wavelength and intensity. Genest 

et al.,  built a rank-based copula density estimator 

using the wavelet analysis 10. This approach can be 

easily implemented using an off-the-shelf wavelet 

package that automatically handles boundary effects. 

They showed that this estimation is optimal for a 

class of uniform copula densities by applying it to 

actuarial and financial data. 

 Ghanbari et al., used wavelet analysis to estimate the 

copula function for censored data. It has been shown 

by the correct control model that wavelet-based 

linear function estimators have accurate convergence 

rates to the mean integral square error (MISE) 11. 

Mohammed  used the linear wavelet method to 

estimate the risk function in a nonparametric method 
12. He adopted the simulation method for two types 

of bivariate distributions and compared these two 

types using the mean square error. AlDoori and 

Mhomod employed variable kernel functions to 

estimate the risk for censored data13. Ahmed et 

al,proposed a wavelet function by deriving the 

quotient from two different Fibonacci coefficient 

polynomials, in addition to comparing ARIMA and 

wavelet ARIMA. This study uses data that relies on 

daily wind speed time series data. The obtained 

results show that the proposed wavelet is the most 

suitable wavelet for wind speed prediction 14. Shihab 

et al, Introduced the new form of polynomials, the 

orthogonal Boubaker polynomial's useful properties, 

then defined the Boubaker wavelet depending on the 

orthogonal Boubaker polynomials. This Boubaker 

wavelet is utilised along with a collocation method 

to obtain an approximate numerical solution of the 

singular linear type of Lane-Emden equations 15. 

The purpose of this study is to employ wavelets to 

estimate copula functions through the use of 

multiresolution analysis. To remove the boundary 

effects in nonparametric estimation methods, 

wavelet analysis, and copula modeling are 

combined. The process involves dividing the 

generated data into detailed coefficients and 

approximate coefficients. Additionally, various 

correlation levels are considered, along with the 

utilization of both symmetric and asymmetric copula 
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functions. The subsequent sections of this work are 

structured as follows: First, a comprehensive 

definition of copula is presented; second, the concept 

of wavelet is defined; third, the wavelet-copula 

estimating technique is introduced; fourth, several 

performance criteria are discussed; and finally, a 

simulation study is conducted to highlight the 

effectiveness of the estimator.  

Materials and Methods 

Copula Function 

Mathematically, the copula is defined as a tool used 

to represent the relational structure between two or 

more random variables 3. 

Therefore, all multivariate CDFs with uniform 

marginal distributions exhibiting the dependence 

structure of the random variables X and Y and their 

marginal CDFs are written as: 

𝑈 = 𝐹𝑋(𝑋) 𝑎𝑛𝑑 𝑉 = 𝐹𝑌(𝑌)                                   1 

where 𝑈 and 𝑉 are variables with uniform 

distribution variables; (𝑈, 𝑉) ∈  [0,1]. The 

probability of these variables,  𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦, is 

defined by the joint CDF 𝐹𝑋𝑌(𝑋, 𝑌) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤

𝑦). 

𝐶(𝑢, 𝑣) = Pr (𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣)                                  2 

where 𝐶(𝑢, 𝑣) is known as a copula and may be 

uniquely identified when u and v are continuous. It is 

believed that copulas are of interest to statisticians 

for two reasons:  

- Check if the measure of dependence is scale-free.  

- Construct a family of bivariate distributions. 

One advantage of this technique is that the copula C, 

which specifies the dependency between X and Y, 

can be chosen independently from the marginal 

models. 

Then, the copula density can be expressed as: 

𝑐(𝑢, 𝑣) =  
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
       𝑢, 𝑣 ∈ [0, 1]                               3  

Where 𝑢 = 𝐹(𝑥) and 𝑣 = 𝐹(𝑦) 

This density exists and is integrable by the unit 

square. 

The following is the formula for a Gaussian copula 4:  

𝐶𝜃
𝐺𝑎(𝑢, 𝑣) =

1

2𝜋√1 − 𝜃2
∫ ∫ exp [−

𝑢2 − 2𝜃𝑢𝑣 + 𝑣2

2(1 − 𝜃2)
]𝑑𝑢𝑑𝑣

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

; 𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑎  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑐𝑜𝑝𝑢𝑙𝑎 

 

𝛷   Represents the standard normal distribution 

function while 𝛷−1 represents the inverse of the 

standard normal distribution function. 

 3formula  Frank copula is given by A 

𝐶(𝑢, 𝑣) =
1

𝜃
𝑙𝑜𝑔 (1 +

(𝑒𝜃𝑢 − 1)(𝑒𝜃𝑣 − 1)

𝑒𝜃 − 1
) , 𝜃

∈ (−∞, +∞)    

Joe copula is provided by 2 

𝐶𝛼(𝑢, 𝑣) = 1 − [(1 − 𝑢)𝛼 + (1 − 𝑣)𝛼 − (1 −

𝑢)𝛼(1 − 𝑣)𝛼]
1

𝛼 as well as its density  

𝑐𝛼(𝑢, 𝑣) = [𝑤𝛼 + 𝑧𝛼 − 𝑤𝑧𝛼]
1
𝛼

−2𝑤𝑧𝛼−1[𝛼 − 1

+ 𝑤𝛼 + 𝑧𝛼 − 𝑤𝑧𝛼] , 𝛼 ∈ [1, ∞) 

Where 𝑤 = 1 − 𝑢 𝑎𝑛𝑑 𝑧 = 1 − 𝑣  . It is 

distinguished by upper tail dependency. moreover, 

𝜆𝑈 = 2 − 2
1

𝛼 .  

Tawn copula is 

𝐶 = 𝑒𝑥𝑝 {(𝑙𝑜𝑔(𝑢)

+ 𝑙𝑜𝑔(𝑣))𝐴 (
𝑙𝑜𝑔(𝑣)

𝑙𝑜𝑔(𝑢𝑣)
)} , 𝑤ℎ𝑒𝑟𝑒  

𝐴(𝑥) = (1 − 𝛼1)𝑥 + (1 − 𝛼2)(1 − 𝑥)

+ ((𝛼1(1 − 𝑥))
𝜃

+ (𝛼2𝑥)𝜃)

1
𝜃

 

𝑎𝑛𝑑 (𝜃, 𝛼1, 𝛼2) ∈ (1, ∞) × [0,1]2   , 𝑓𝑜𝑟 𝛼1 = 𝛼2 =
1, recover the Gumbel copula. 
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𝐴𝑡 𝑎𝑛𝑦 𝑡𝑖𝑚𝑒 𝛼1 ≠ 𝛼2 it will be asymmetric in its 

components 4.  

Rotation copulas: 

Because of their limited parameter space, some of the 

chosen copula models only allow for positive 

interdependence, while others only allow for upper 

or lower tail dependence. To make up for this 

constraint as previously demonstrated, some copulas 

do not have complete coverage. Clayton copula, for 

example, can only capture Kendall's 𝜏 between 0 and 

1. If Kendall's 𝜏 is found to be negative in early 

analysis, copulas like Clayton will be useless. Copula 

rotations can correct this. This can be corrected by 

copula rotation. Displays the copula rotations at 90, 

180, and 270 degrees. They are given as 

𝐶90  =  𝑣 − 𝐶(1 −  𝑢, 𝑣) 

 𝐶180 =  𝑢 +  𝑣 − 1 +  𝐶(1 −  𝑢, 1 − 𝑣) 

𝐶270 =  𝑢 −  𝐶(𝑢, 1 −  𝑣) 

where C  represents the unrotated copula and 𝑢 , 𝑣 

represents the margins. 

Wavelet 

Wavelets are an extension of Fourier analysis in that 

both seek to express complex functions using the 

sum of simple ones. Wavelet theory, on the other 

hand, came considerably later than Fourier analysis 
16,17. 

Wavelets have accomplished impressive acceptance 

in earth sciences 18,19. Wavelets have been used 

successfully in a variety of applications, including 

numerical analysis, engineering, signal and image 

processing, statistics, and geophysics. Using the 

mathematical construction of a wavelet discrete 

transform, first provide details of the space 𝐿2(𝑅) in 

terms of multi-resolution analysis. 

Multiresolution is a method for describing the 

building of spaces and providing an analytical 

explanation of the components and bases of these 

spaces. Let us first construct the square-integrable 

function, often known as the space of Lebesgue 

measurable functions, which is written as 𝐿2(𝑅) and 

defined as 20 𝐿2(𝑅) = {𝑓: 𝑅 → 𝑅; ∫ |𝑓(𝑥)|2∞

−∞
< ∞} 

21. 

  A wavelet is a mathematical function tool used to 

divide a given function into compounds of different 

frequencies and explore each configuration using the 

appropriate solution for each measurement. These 

tiny waves display information and data in the time 

and frequency domains. The continuity of their 

signal is limited by two variables: Unlike the sine 

function, which extends between (−∞, ∞), the 

wavelet function is irregular and asymmetric. A 

wavelet is defined mathematically as a real value 

function on the real axis that fluctuates up and down 

consistently around zero. In other words, it is defined 

as a signal of limited time length (continuity) with an 

average value of zero 12, 22. The wavelet transform is 

based on the pressure of the wavelet to be processed 

with two functions: the first is the mother wavelet 

function 𝛹(𝑥) to obtain a set of coefficients 

characterized by the wavelet coefficients or detailed 

coefficients D(s,t), and the second is the scaling 

function ∅(𝑥), also called the father's function, to 

obtain the approximate coefficients A(s,t) 23.                               

The wavelet is then used to approximate the signal 

and find a group of wavelet subgroups that are 

constructed from expanding or compressing and 

shifting the original wavelet and represent the signal 

or data that you want to analyze. In other words, the 

process is the transformation of large-scale 

measurements into precise measurements by 

aggregating these data or signals. The main result of 

the transformation process is the mother wavelet 

function defined as 24: 

𝛹𝑎,𝑏(𝑥) =
1

√𝑎
𝛹 (

𝑥−𝑏

𝑎
)  𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0                   4 

Where a and b are dilation and translation 

parameters, 

 𝛹 refers to the mother wavelet.  

 𝛹𝑎,𝑏  refers to the daughter wavelet. 

There are two types of wavelet transforms: 

continuous wavelet transforms, and discrete wavelet 

transforms. 

Continuous wavelet transform: 

https://doi.org/10.21123/bsj.2024.9673
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The mathematical principle underlying the 

Continuous Wavelet Transform (CWT) involves 

partitioning a continuous function over a specified 

time interval into a collection of wavelets. This 

transformation has the potential to provide a unified 

signal representation that encompasses both the time 

and frequency domains, providing a comprehensive 

view of the data across these two dimensions. The 

mathematical expression representing this change 

may be described as 12,22:  

𝐶𝑊𝑇(𝜏, 𝑠) = ∫ 𝑥(𝑡)
1

√|𝑠|
𝜓 (

𝑡 − 𝜏

𝑠
) 𝑑𝑡 

Where τ represents the displacement parameter (or 

withdrawal) for locating the wavelet in the time 

domain, and s is the scaling factor. 

Discrete Wavelet transform: 

The discrete wavelet transform (DWT) is well 

recognized as a prominent and extensively utilized 

method for wavelet transformation in many domains 

such as engineering, mathematics, statistics, and 

other practical applications. The input and output of 

this transformation consist of discrete data and 

imitate the discrete Fourier transformation 

procedurally. The data undergoes a transformation 

from the time range, namely the original data field, 

to the wavelet domain. This transformation yields 

vector-shaped results that maintain the same size as 

the original vector. The Discrete Wavelet Transform 

(DWT) can be mathematically represented using 

linear equations as well as matrix operations13. May 

be expressing this mathematically by the two 

equations 23: 

𝐷(𝑠, 𝑡) = ∫ 𝑓(𝑋)
∞

−∞

𝜓𝑠,𝑡(𝑋)𝑑𝑥 

𝐴(𝑠, 𝑡) = ∫ 𝑓(𝑋)∅𝑠,𝑡(𝑋)𝑑𝑋
∞

−∞

 

Where s is the scaling or gradient variable, and t is 

the transform variable. 

To approximate the probability density function, the 

probability density function is decomposed into a set 

of infinite functions (daughter wavelets) in the time 

domain on an orthonormal basis by a scaling function 

(father wavelet) and a wavelet function (mother 

wavelet) 10. 

The approximation is defined as:  

𝜑 𝑗𝑘(𝑡) =  2 
𝑗

2⁄ 𝜑(2𝑗 𝑡 − 𝑘)                                  5 

and  

𝜓𝑗𝑘  (𝑡) =  2
𝑗

2⁄ 𝜓(2𝑗𝑡 −  𝑘)                                     6 

This study uses mother and father Daubechies 

wavelets. 25. 

Wavelet – Copula 

In this section, it will be referred to as "wavelet- 

copula," and the procedure can be easily performed 

in two steps: 

The first step involves using wavelet analysis to 

decompose variables. The second step uses the 

decomposed input variables to estimate the copula 

density function. Since modeling dependence by 

copula is sensitive to the marginal model, a major 

innovation of the procedure is the combination of 

wavelet analysis with copula models.  

Wavelet – Copula Estimation 

Copula density estimates are constructed using 

wavelet analysis. This process is easy to implement 

using out-of-the-box wavelet tools and is based on 

algorithms that automatically deal with boundary 

effects. Pseudo-samples (𝑅𝑖/𝑛, 𝑆𝑖/𝑛), measured on 

arbitrary divisions of the unit square, is a more 

promising approach 10.  

     Wavelet-based estimation of copula density helps 

explain the underlying dependence structure. In 

general, the wavelet analysis of the second-order 

function is ℎ(𝑥, 𝑦), which allows you to analyze this 

mapping infinitely simultaneously with a number of 

resolution levels 𝑗 = 0, 1,2, . ..  

The decomposition at any level 𝑗0  ∈  𝑁 is given by 

ℎ(𝑥, 𝑦) = ℎ𝑗0 (𝑥, 𝑦) + 𝐷𝑗0 ℎ(𝑥, 𝑦), 𝑥, 𝑦 ∈  𝑅         7 

so that 

ℎ𝑗0 (𝑥, 𝑦) =  ∑ 𝛼𝑗0𝑘𝜑𝑗0𝑘(𝑥, 𝑦)𝑘∈𝑧2                         8 

is a trend (or approximation) and 

https://doi.org/10.21123/bsj.2024.9673
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𝐷𝑗0ℎ(𝑥, 𝑦) =  ∑ (∑ 𝛽 𝑗𝑘
(1)

 𝜓 𝑗𝑘
(1)

 (𝑥, 𝑦)𝑘∈𝑧2 +∞
𝑗=𝑗0

∑ 𝛽 𝑗𝑘
(2)

 𝜓 𝑗𝑘
(2)

 (𝑥, 𝑦)𝑘∈𝑧2 + ∑ 𝛽 𝑗𝑘
(3)

 𝜓 𝑗𝑘
(3)

 (𝑥, 𝑦)𝑘∈𝑧2 ) 9 

 

 is a collection of three sorts of details: vertical edges, 

horizontal edges, and oblique (corner of the square). 

In this form, the coefficients 𝛼𝑗0𝑘and 𝛽 𝑗𝑘
(1)

, 𝛽 𝑗𝑘
(2)

and 

𝛽 𝑗𝑘
(3)

with 𝑗 ≥  𝑗0 are unique for each choice of 𝑗0 ∈

 𝑁. For all  𝑗 ∈  𝑁 and  =  (𝑘1, 𝑘2) ∈  𝑧2 , the 

functions 𝜑𝑗0𝑘 and 𝜓 𝑗𝑘
(1)

  , 𝜓 𝑗𝑘
(2)

  and 𝜓 𝑗𝑘
(3)

 are 

defined as follows: 

                                                     

𝜑𝑗𝑘1𝑘2
 (𝑥, 𝑦) = 𝜑𝑗𝑘1

 (𝑥)𝜑𝑗𝑘2
 (𝑦)

𝜓𝑗𝑘1𝑘2

(1)
 (𝑥, 𝑦) = 𝜑𝑗𝑘1

  (𝑥)𝜓𝑗𝑘2
 (𝑦)

𝜓 𝑗𝑘1𝑘2

(2)
 (𝑥, 𝑦) =  𝜓𝑗𝑘1

 (𝑥)𝜑𝑗𝑘2
 (𝑦)

𝜓 𝑗𝑘1𝑘2

(3) (𝑥, 𝑦) = 𝜓 𝑗𝑘1
(𝑥)𝜓𝑗𝑘2

 (𝑦)

                 10 

in terms of a certain scaling function, a 

corresponding wavelet, and their location-scale 

transformations provided by. 

𝜑 𝑗𝑘3
(𝑡) =  2 

𝑗
2⁄ 𝜑(2𝑗 𝑡 − 𝑘3)                             11 

and 

𝜓𝑗𝑘3
 (𝑡) =  2

𝑗
2⁄ 𝜓(2𝑗𝑡 − 𝑘3)                              12 

for any  𝑡 ∈  𝑅, and 𝑘3  ∈  𝑍. The functions φ and ψ 

(the father and mother wavelet functions, 

respectively) are defined by Many technical 

limitations that have to be achieved. To ensure that 

the family of position scales they create constitutes 

an orthonormal system of 𝐿2, the set of square-

integrable functions. The selection of each pair (φ, ψ) 

yields a separate multi-resolution analysis with the 

required degree of regularity. This study is assumed 

to have compact support [0, L], as is the case for the 

widely utilized, and provides an overview of this 

viewpoint. A wavelet representation is distinguished 

by the fact that the trend at a level  𝑗0  + 1 is 

Consistent with the trend at level 𝑗0, highlighted by 

horizontal, vertical, and diagonal features 

corresponding to a level 𝑗0 in other words, 25, 26. 

ℎ𝑗0+1 =  ℎ𝑗0
 + (∑ 𝛽𝑗0𝑘

(1)
 𝜓 𝑗0𝑘

(1)
𝑘∈𝑧2 +

∑ 𝛽𝑗0𝑘
(2)

 𝜓 𝑗0𝑘
(2)

𝑘∈𝑧2 + ∑ 𝛽𝑗0𝑘
(3)

 𝜓 𝑗0𝑘
(3)

𝑘∈𝑧2 )                      13 

The actual copula  𝐶 was detected with ℎ5by setting 

𝐻(𝑥, 𝑦) =  𝐶(𝐹 (𝑥), 𝐺(𝑦)),                                  14 

Assume that (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) is a random 

sample from the unknown distribution 𝐻. The 

empirical is represented by 𝐹𝑛 and 𝐺𝑛 distributions 

related to 𝐹 and 𝐺 

(
𝑅𝑖

𝑛
,

𝑆𝑖

𝑛
 )  =  (𝐹𝑛(𝑋𝑖), 𝐺𝑛(𝑌𝑖)), 𝑖 = 1, … , 𝑛.                 15 

Where 𝑅𝑖 and 𝑆𝑖 are the ranks of 𝑋𝑖 and 𝑌𝑖 

Respectively.  

 Let 𝜑 and  𝜓 be the corresponding wavelet for a 

given scaling function. Both functions are considered 

real-valued and compactly support [0, 𝐿] for some 

𝐿 >  0. For each 𝑗 ∈  𝑁, define 

𝜑𝑗𝑘 , 𝜓𝑗𝑘
(1)

  , 𝜓𝑗𝑘
(2)

  , 𝑎𝑛𝑑 𝜓𝑗𝑘
(3)

  as in Eq 13 for each 𝑘 =

 (𝑘1, 𝑘2)  ∈  𝑧2 . The set 

{𝜑𝑗0𝑘 , 𝜓𝑗𝑙
(1)

 , 𝜓 𝑗𝑙
(2)

 , 𝜓 𝑗𝑙
(3)

∶  𝑗 ≥  𝑗 0, 𝑘 ∈  𝑧2 , 𝑙 ∈  𝑍2} 

is the orthonormal basis of 𝐿(𝑅2 )  for any arbitrary 

𝑗 0 ∈  𝑁. Given a copula density 𝑐, it may be 

expanded as Eq 8 with 

𝛼 𝑗0𝑘 =  ∫ ∫ 𝑐(𝑢, 𝑣)
1

0

1

0
𝜑𝑗0𝑘(𝑢, 𝑣)𝑑𝑣𝑑𝑢, 𝑘 ∈  𝑧2                                                    

16 

According to Eq 15, the change in variables  𝑢 =

 𝐹 (𝑥) 𝑎𝑛𝑑 𝑣 =  𝐺(𝑦) yields  

𝛼 𝑗0𝑘 =  ∫ ∫ 𝜑𝑗0𝑘(𝐹 (𝑥), 𝐺(𝑦))
1

0

1

0

ℎ(𝑥, 𝑦)𝑑𝑦𝑑𝑥 

=  𝐸ℎ{𝜑𝑗0𝑘(𝐹 (𝑋), 𝐺(𝑌))},                                     17 

where 𝐸ℎ is the expectation based on the original 

observations' common distribution 

(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛). 

If  𝐹 𝑎𝑛𝑑 𝐺 are unknown, a non-parametric is 

generated by substituting 𝐹 and 𝐺 with their 

empirical distribution function, 𝐹𝑛 𝑎𝑛𝑑 𝐺𝑛. 

The estimator is, therefore, rank-based, i.e. 
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𝛼̃𝑗0𝑘  =  
1

𝑛
 ∑ 𝜑𝑗0𝑘(𝐹𝑛(𝑋𝑖), 𝐺𝑛(𝑌𝑖))

𝑛

𝑖=1

 

=
1

𝑛
∑ 𝜑𝑗0𝑘(

𝑅𝑖

𝑛
,

𝑆𝑖

𝑛
)𝑛

𝑖=1                                            18 

A wavelet-based estimate of c is then given by: 

𝑐̃𝑗0
 (𝑢, 𝑣) =  ∑ 𝛼̃𝑗0𝑘𝑘∈𝑧2  𝜑𝑗0𝑘(𝑢, 𝑣),           𝑢, 𝑣 ∈

[0, 1]                                       19 

where the smoothing index of the technique is 

denoted by the number 𝑗0. It is worth noting that is 

not always the copula density, 𝑐̃𝑗0
 , just as an 

empirical copula, is not a copula. 𝑐̃𝑗0
  In particular, 6 

can be negative in the section of the domain so that 

it cannot be merged into 1. When you want an 

estimate of the intrinsic copula density, it can be 

obtained by truncating and normalizing 𝑐̃𝑗0
 

From a numerical standpoint, it is crucial to notice 

that the sum over k in (18) is finite since the wavelet 

is supported by compact support. Consequently, in 

reality. Only [𝐿2(𝑅)] c terms must be computed in 

the special situation when the copula density must be 

estimated at a single point (𝑢0, 𝑣0)  ∈  [0, 1]2. For 

these reasons, the procedure's performance is 

determined by the level of 𝑗0 selected. The latter 

should be determined using the most efficient 

method possible 10. 

Performance Criteria: 

The comparison between the functions is carried out 

according to the Root Mean Square Error (RMSE) 

and is done by calculating the mean square error of 

the copula function estimated for each iteration 

according to the following formula: 

𝑀𝑆𝐸(𝑐̃𝑗0
 , 𝑐)  =  ∫ ∫ {𝑐̃𝑗0

 (𝑢, 𝑣) −  𝑐(𝑢, 𝑣)}
21

0

1

0
 𝑑𝑣𝑑𝑢                                                                 

20 

𝑅𝑀𝑆𝐸(𝑐̂, 𝑐) = √𝑀𝑆𝐸(𝑐̃𝑗0
, 𝑐)                                   21 

And the Akaike criterion (AIC) is: 

𝐴𝐼𝐶𝑛
(.)

≔ −2 ∑ ln (𝑐𝜃𝑛

(.)
(𝑢1

(𝑖)
, … , 𝑢1

(𝑖)
))𝑛

𝑖=1 + 2𝑝,                                                                        

22 

Where p is the number of parameters of the family 

and 𝜃𝑛 is a parameter estimate.The logarithm of 

maximum likelihood possibility (LOG L). 

 𝐿(𝜃; 𝑢1, … , 𝑢𝑛) =
∏ 𝑐𝜃(𝑢𝑖)𝑛

𝑖=1    𝑎𝑛𝑑 𝑙(𝜃; 𝑢1, … , 𝑢𝑛) = ∑ 𝑙(𝜃; 𝑢𝑖)𝑛
𝑖=1                                         

23 

Respectively, where. 

𝑙(𝜃; 𝑢𝑖) = 𝑙𝑛𝑐𝜃(𝑢𝑖) 

The best method is the one that minimizes root mean 

square error and minimizes information criterion. 

Both criteria select the model that gives the highest 

likelihood. 

 

Discussion and Results 

The simulation scheme consists of many steps 

depending on the R programming package. 

It can be described as the estimation algorithm for 

d=2 simplicity. So, they are given a sequence 

{(𝑋𝑖 , 𝑌𝑖)}1≤𝑖≤𝑛  of n samples, The estimator 

proposed method in this paper can be summarized in 

a number of the following steps. 

-   simulate five different random samples (n= 

32,64,128,256, 512) with replication (r=1000). 

- Generate 𝑋, 𝑌 variables from a uniform 

distribution.  

- Rank the 𝑋𝑖 , 𝑌𝑖 with  

𝑅𝑖 = ∑ 1𝑋𝑙<𝑋𝑖

𝑛

𝑖=1

 𝑎𝑛𝑑 𝑠𝑖 = ∑ 1𝑌𝑙<𝑌𝑖

𝑛

𝑖=1

 

- Compute the empirical distribution function 

 𝑢 = 𝐹𝑛(𝑋𝑖) =
𝑅𝑖

𝑛
 𝑎𝑛𝑑 𝑣 =  𝐹𝑛(𝑌𝑖) =

𝑆𝑖

𝑛
 

- Compute the empirical scaling factor  

𝛼̂𝑗0𝑘 =
1

𝑛
∑ 𝜑𝑗0𝑘(

𝑅𝑖

𝑛
,
𝑆𝑖

𝑛
)

𝑛

𝑖=1

 

- Compute the empirical wavelet coefficients 

𝛽̂𝑗𝑘 =
1

𝑛
∑ 𝜓𝑗𝑘 (

𝑅𝑖

𝑛
,
𝑆𝑖

𝑛
)

𝑛

𝑖=1
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- Compute the maximum scale index 𝐽𝑛 =

⌊
1

2
 𝑙𝑜𝑔2

(
𝑛

log 𝑛
)
⌋ , 𝐽 is integer number 

represented the finest resolution from  a 

sample of size n.  

- Construct the estimated copula density c by the 

formula 

𝑐̃𝑗0
(𝑢, 𝑣) = ∑ 𝛼̂𝑗0𝑘𝜑𝑗0𝑘(𝑢, 𝑣),

𝑘∈𝑧2

𝑤ℎ𝑒𝑟𝑒 𝑢, 𝑣 ∈ [0,1] 

      At resolution level j=J,J-1,…,0 

- Determine the number of vanishing moments at 

4 degrees. 

- From all steps, it can be estimated the 

performance depends on the choice of level 𝑗0 , 

the latter should be determined most optimally.  

- The results showed that in estimating the copula 

density function using the wavelet method when 

the correlation level 𝜏 = 0.7, the Gaussian copula 

ranked first, followed by the Frank copula, and 

the Joe copula ranked last. In the case of medium 

and weak correlation, the Tawn copula was in 

first place, followed by the Rotation Tawn 

copula, while Gaussian copula came in last place 

depending on the measures (Root Mean Square 

Error, Akiake Information Criteria, and 

Logarithm likelihood criteria). 

Consider five copula functions as dependency 

structures (Gaussian, Frank, Tawn, Rotation 

Tawn, and Joe), with Kendall’s tau 𝜏 =

 0.7,0.5,0.3. as shown in Tables 1-3. 

From Table 1, it appears that when the level of 

correlation is high,  Root of the mean square error 

and for all copula functions decreases. Likewise, the 

value of the Akaike coefficient is as small as 

possible, while the value of the logarithm of the 

maximum likelihood is as large as possible. 

 

Table 1. Refers to root MSE, AIC, and logarithm likelihood criteria for copula density 𝝉 = 𝟎. 𝟕 

Function  
ECDWT 

RMSE AIC LOGL 
Sample size 

GAU 

32 0.18843 -57.4329 29.8099 

64 0.16175 -116.785 59.63232 

128 0.13695 -414.451 208.0832 

256 0.0767 -494.185 248.3973 

512 0.03925 -1314.73 658.6745 

FRANK 

32 0.16953 -73.1424 37.44939 

64 0.16593 -122.257 62.16542 

128 0.22525 -260.514 131.355 

256 0.05901 -458.975 230.9677 

512 0.05179 -1260.37 631.4375 

TAWN 

32 0.19771 -70.7703 40.02418 

64 0.18102 -83.0877 42.97897 

128 0.17395 -240.125 127.4758 

256 0.17055 -414.966 215.1595 

512 0.14552 -1000.56 501.807 

RTAWN 

32 0.23972 -60.1029 31.20294 

64 0.1673 -92.9648 51.16785 

128 0.15094 -282.614 142.5703 

256 0.10993 -514.148 258.4948 

512 0.0898 -850.793 427.7506 

JOE 

32 0.59031 -60.2817 30.79977 

64 0.42713 -63.8449 32.46232 

128 0.38647 -67.469 36.21485 

256 0.37677 -248.321 126.1468 

512 0.20222 -435.536 220.0326 

 

From Table 2 notes that the value of the root of the 

mean square error and the Akaike coefficient at the 

medium correlation level is higher than it was at the 

high correlation level. For all copula functions used 
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in the study, it is clear that the  root of the mean 

square error is inversely proportional to the level of 

correlation in the copula functions. In contrast, the 

value of the logarithm of the maximum likelihood is 

higher than it was at the high correlation level. 

 

Table 2. Refers to root MSE, AIC, and logarithm likelihood criteria for copula density 𝝉 = 𝟎. 𝟓 

Function  
ECDWT 

RMSE AIC LOGL 
Sample size 

GAU 

32 0.55886 -18.9267 11.26035 

64 0.46729 -66.2573 34.80296 

128 0.45667 -113.008 58.77383 

256 0.35513 -216.31 111.0381 

512 0.25761 -358.82 182.4047 

FRANK 

32 0.48065 -25.2846 14.28811 

64 0.44904 -81.8056 42.32155 

128 0.36845 -145.747 74.70922 

256 0.27853 -249.719 127.3506 

512 0.24437 -644.141 324.3424 

TAWN 

32 0.54244 -8.03816 6.34288 

64 0.49021 -45.6272 25.02905 

128 0.48712 -121.104 62.55991 

256 0.18847 -195.834 100.3944 

512 0.15348 -986.863 494.9124 

RTAWN 

32 0.59311 -38.5824 20.66113 

64 0.44009 -60.1973 31.97001 

128 0.3904 -209.497 106.0468 

256 0.36051 -289.044 146.3451 

512 0.19462 -788.288 395.9537 

JOE 

32 0.53243 -19.6327 11.63855 

64 0.48461 -45.4424 25.01778 

32 0.55886 -18.9267 11.26035 

64 0.46729 -66.2573 34.80296 

128 0.45667 -113.008 58.77383 

256 0.37908 -250.979 127.8033 

512 0.22915 -445.204 225.2306 

 

As for Table 3, when the level of correlation is weak, 

and for all copula functions and at different sample 

sizes, the value of the root of the mean square error 

is greater than it was at the high and medium levels, 

while the value of the Akaike coefficient is the 

lowest possible, and the value of the logarithm of the 

maximum likelihood is the highest possible. When 

comparing the copula functions according to the 

three comparison criteria, it appears that the Tawn 

copula function is the most suitable function for the 

estimation method using wavelets because the 

amount of change in the root of the mean square error 

is very slight. Likewise, the Akaike and logarithm 

criteria are the greatest possibility of the function, 

especially when the sample size is large, and this 

indicates that the wavelet transform method has 

better performance when the sample size is large. 
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Table 3. Refers to root MSE, AIC, and logarithm likelihood criteria for copula density 𝝉 = 𝟎. 𝟑 

Function  
ECDWT 

RMSE AIC LOGL 
Sample size 

GAU 

32 0.71163 -8.79708 6.51427 

64 0.55352 -48.6918 26.3745 

128 0.42452 -109.671 56.80845 

256 0.41359 -271.17 137.6521 

512 0.34671 -694.429 349.3544 

FRANK 

32 0.7231 -10.2541 7.32794 

64 0.66538 -26.0737 15.78511 

128 0.59807 -65.7989 35.52795 

256 0.44442 -253.352 128.7044 

512 0.3717 -415.229 209.8027 

TAWN 

32 0.66441 -11.8305 8.07624 

64 0.64268 -21.6373 13.47802 

128 0.60952 -63.3696 33.94843 

256 0.46535 -223.006 113.7815 

512 0.15607 -854.443 428.785 

RTAWN 

32 0.86981 -12.2269 9.2311 

64 0.73668 -19.8288 11.68532 

128 0.56702 -94.2055 49.31526 

256 0.52549 -404.656 203.9782 

512 0.20583 -435.671 221.0578 

JOE 

32 0.62913 -12.0969 8.09585 

64 0.49163 -42.0206 23.06409 

128 0.41235 -113.394 58.62762 

256 0.39105 -409.191 206.0382 

512 0.39068 -334.387 169.9307 

 

The contour plot and the 3D plot of the real copula 

functions (Gaussian, Frank, Tawn, Rotation Tawn, 

and Joe) are illustrated in the Figures below, in 

addition to the preface shapes for each of them using 

the estimation copula density wavelet transform 

method (ECDWT). From Fig. 1, it can be noted, 

through the three-dimensional figures, that the 

distribution of the observations of the copula 

function estimated by the wavelet transform 

(ECDWT) method was accurate at the edges while it 

was less accurate at the center for both functions. It 

is also evident from the three-dimensional figures 

that the probability density function of the real 

(Gaussian) copula function is characterized by a 

similar concentration of observations at the center 

and at the edges, with the withdrawal of observations 

towards the tail and relatively little expansion at the 

center. Through the three-dimensional figure, the 

(ECDWT) smoothing of the Gaussian function was 

more flat at the center and more congruent at the tails 

(extremities) when compared to the real probability 

density function.  

 

 

Figure 1. Counter and 3D plot for Gaussian copula density estimation with (ECDWT). 
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Besides, Fig.  2  represents the estimates of the Frank 

function when (n = 128, tau=0.7). It shows that the 

Frank function is characterized by similar 

dependency the center and at the edges, noting that 

the difference in the distribution of observations 

between the two Gaussian functions and Frank is that 

the observations at the center in the Frank function 

are less flat than in the Gaussian function and that the 

observations with respect to the Frank function are 

less pulled towards the edges. As for the smoothing 

of the observations using (ECDWT) method, we 

noticed fluctuations in the distribution of 

observations. At the edges, it was better at the center. 

It can be recognized as the general figure of the 

densities as well as high- and low-density regions. 

Quiet, some of the families (e.g., Gaussian and 

Frank) are very difficult to characterize. Indications 

of the argued effects can be noted in the simulated 

sample of the Frank copula see Fig. 2. (ECDWT) 

tends to overvalue the true density in the corners (0, 

0) and (1, 1). 

 
Figure 2. Counter and 3D plot Frank copula density with ECDWT method. 

 

In addition, Fig. 3 represents the assumed and 

estimated probability density function for the copula 

(Tawn) at the high level of correlation and the sample 

size (128), and it is clear that the copula function 

(Tawn) is characterized by a large concentration of 

observations at the right side, and the (ECDWT) 

method remained far from the assumed copula 

function. 

 

Figure 3. Counter and 3D plot for Tawn copula density with ECDWT method. 

Fig. 4  represents the estimates of the copula function 

(RTawn) at the high level of correlation, and the 

sample size (128), which was rotated by 90 degrees, 

assumed the Rtawn copula function. There is a large 

concentration of observations on the right, but the 

observations in the middle are not as flat as the Tawn 

copula). noted that the centering of the observations 

at the right tail was identical to the real shape, and 

the centering of the observations at the middle 

became less fluctuating than it was in the Tawn 

copula. shown a close estimate of the assumed 

copula function (Tawn). 
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Figure 4. Counter and 3D plot for Rotation Tawn copula density with ECDWT method. 

However Fig. 5  represents the probability density 

function for the (Joe) copula when (tau=0.7, n=128). 

It is clear from it. The assumed Joe copula function 

has a right tail, and the concentration of observations 

was clearly on the left side, while the distribution of 

observations in the middle appears flat. In the 

probability density function estimated by the 

(ECDWT) method, the performance was not good at 

the center, which was characterized by instability 

because the observations were too flat or at the right 

tail, where the concentration of observations was 

greater, but the concentration of observations at the 

left end was more similar to the assumed shape of the 

copula. This is evidence that when estimating the 

copula function (Frank, Tawn, Rtawn, and Joe), the 

smoothing of the probability density functions was 

less flat at the center, but it was more withdrawn 

towards the tails despite the presence of a great 

match between the smoothed and the real functions. 

Additionally, despite having observed that the 

smoothed and real functions had a significant match, 

the smoothing of the probability density functions 

while estimating the copula function (Frank, Tawn, 

Rtawn, and Joe) was less flat. In general, it can be 

said that the smoothing when estimating the copula 

function (Gaussian) is slightly better than the 

smoothing when estimating the copula functions 

(Frank, Tawn, Rtawn Joe). 

 

Figure 5. Counter and 3D plot for JOE copula density with ECDWT method. 

Conclusion 

This paper presents copula estimation based on the 

wavelet methods, i.e., it is based on Daubechies 

wavelets from four degrees. The simulation results 

were reached using five copulas (Gaussian, Frank, 

Tawn, Rotation Tawn, and Joe) for five sample sizes 

(n = 32, 64, 128, 256, 512) based on three criteria 

(RMSE, AIC, and LOGL), represent a statistic for 

selecting the copula with the best performance when 

using wavelets to estimate the copula density 

function when taking high, medium and low 

correlation levels (𝜏 = 0.7, 0.5, 0.3).  

Accordingly, several conclusions can be drawn from 

the results presented so far. 

The present study focused on the estimation and 

identification of Copula density functions using 

rank-dependent wavelets. Through simulations, it 

was shown that the value of the square root of the 

mean squared error decreases for all relevant 

functions as the sample size increases. It is also noted 

that when there is a high level of correlation, the 

value of the square root of the mean squared error 

and Akiake coefficient are the smallest possible, and 
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the logarithm of the maximum likelihood is as large 

as possible. 

Wavelet algorithms have efficient computational 

properties, making them amenable to rapid 

computation. Additionally, these algorithms possess 

a straightforward nature that facilitates their ease of 

updating and adapting to various modeling scenarios. 

The numerical performance of the recommended 

linear wavelet density estimator was demonstrated 

using simulated datasets. 

The explanations also included comparisons of 

complete data and different sample sizes. 

Nevertheless, wavelet-based copula function 

estimators fail to satisfy the fundamental 

requirements of parametric models. 

It is clear from the above that when the correlation is 

medium and low, using wavelet analysis to estimate 

the copula density function improves the 

performance of the Tawn copula function. It is clear 

from the figures that the Tawn copula function is 

better when using wavelets to estimate the copula 

density function. 

Future studies could include using nonlinear 

wavelets to estimate copula density and goodness-of-

fit testing. 
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 تقدير كثافة الرابطة باستعمال التحويل المويجي

  2مناف يوسف حمود، 1هاشم فلحي فاطمة

 ، العراق.، بصرةالبصرةقسم الاحصاء، كلية الإدارة والاقتصاد، جامعة 1

 الإدارة والاقتصاد، جامعة بغداد، بغداد، العراق.قسم الاحصاء، كلية 2

 

 

 ةالخلاص

تائج أكثر من أجل الحصول على ن لامعلمية،طريقة جديدة لتقدير دالة كثافة الرابطة باستخدام تحليل المويجات كطريقة يقترح هذا البحث 

ع تعد طريقة المويجات طريقة اوتماتيكية للتعامل م اللامعلمية. اذالتقدير  منها طرائقمن مشكلة تاثيرات الحدود التي تعاني  دقة وخالية

طة تم لتقدير دالة كثافة الرابو مستقرة.كانت السلسلة الزمنية مستقرة او غير  إذاتاثيرات الحدود وذلك لانها لا تأخذ بنظر الاعتبار 

 Joeو Rotation Tawnو Tawnو Frankو Gaussian لتوليد البيانات وباستعمال خمسة دوال رابطة مختلفة مثل استعمال المحاكاة

واعتماداً على الحلول المتعددة، أظهرت النتائج أن تقدير دالة الكثافة  موجبة، رتباطاوبخمسة أحجام مختلفة للعينات عند ثلاثة مستويات 

τ الارتباطالرابطة بطريقة المويجات عندما يكون مستوى  =  Frankتبة الأولى تليها الرابطةفي المر Gaussianكانت الرابطة  0.7 

𝜏) اما في حالة الارتباطات المتوسطة والضعيفة  الأخيرة.المرتبة    Joeواحتلت الرابطة  = في  Tawnكانت الرابطة (0.3, 0.5

 Root Mean)بالاعتماد على المعايير  بالمرتبة الأخيرة. Gaussianفي حين جاءت  Rotation Tawnالمرتبة الأولى تليها الرابطة 

Square Error, Akiake Information Criteria, and Logarithm likelihood criteria)  وتبين من خلال الرسم ،

(Contour plot)   والشكل ثلاثي الابعاد(3D plot)  طريقة لدوال الرابطة الحقيقية. فضلا عن اشكال التمهيد لكل منها باستخدام

(ECDWT) ويتضح من خلال الاشكال الدائرية ان توزيع مشاهدات الدالة الرابطة المقدرة بطريقة ،(ECDWT)  كان دقيقا عند

 . Tawnو   Gaussianلكل من الدوال الاطراف بينما كان اقل دقة عند المركز 

 .المويجات، دالة الرابطة، الاعتمادية، تحليل الحلول المتعددة تأثيرات الحدود، الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.9673

