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Abstract

There is always an interest in an effective technique to generate a numerical solution of integral equations
with singular or weakly singular kernels more precisely because numerical methods have limitations. In
this study, integral equations with singular or weakly singular kernels are solved using the Bernoulli
polynomial approach. The primary goal of this study is to provide an approximate solution to such problems
in the form of a polynomial in a series of straightforward steps. Also, assuming that the denominator of the
kernel will never be zero or have an imaginary value due to the selected nodes of the unique two kernel
variables. With the 4™ and 8"-degree Bernoulli polynomials as an example, the current approach provides
a solution very close to the exact solution in the test examples. While. The very modest magnitude of the
errors in the test examples proves the effectiveness of the current strategy. Also, the ease with which a
computer program can be implemented makes this technique very efficient. Another objective is to
determine the efficiency of the proposed method by comparing it with various approaches. The
approximated solution for integral equations with singular or weakly singular kernels is demonstrated to
significantly converge to the precise ones by using the Bernoulli polynomial and is superior to those found
by other stated approaches. This guarantees the originality and high accuracy of the suggested method.
Also, the convergent of the proposed method is discussed. The programs are implemented using the
MATLAB program R2018a.

Keywords: Abel’s integral equation, Bernoulli polynomials, Integral equation, Singular kernel, Weakly
singular kernel.

Introduction

Due to the wide range of applications of
singular integral equations, they are used in many
different areas of science. Examples of such fields
where applied mathematics is used include the theory
of elasticity, viscoelasticity, hydrodynamics, and
other fields. Many singular integral equations have
very difficult-to-use analytic solutions. Many
research efforts have focused on developing
approaches that are more effective and efficient for

solving integral equations with singular and weakly
singular kernels such as; To obtain an approximate
solution to second-order integral equations with
weakly singular Kkernels, power series with
collocation were investigated *. Generalized weakly
singular Fredholm integral equations of the second
kind are solved using Euler-Maclaurin's summation
formula 2. Legendre multiwavelets are used to find
the numerical solution of Cauchy-type singular
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integral equations of the 1% kind with generalized
kernels 3. The hybrid orthonormal Bernstein and
block-pulse function wavelet methods were
considered to solve the nonlinear Volterra integral
equations (VIE) with weakly singular kernel . For
the linear VIE with a weakly singular convolution
kernel, asymptotic expansions are derived using the
Laplace transform °. Touchard polynomials were
used to find an approximate solution for Linear VIE
of the 1% and 2™ kind with a singular kernel ¢. A
formula for second-order backward differentiation
was proposed for the Volterra integro-differential
equation with a weakly singular kernel solved by the
sinc-collocation method ’. Finally, a method of
interpolation for weakly singular VIE of 2" kind
based on the barycentric Lagrange approach was
proposed é.

On the other side, several researchers solved
various forms of integral equations using Bernoulli
polynomials, such that; Orthonormal Bernoulli
polynomials were utilized in some VIE applications
to provide an approximate solution °. .Operational
matrices of Bernoulli wavelet are used for solving
linear stochastic It6-VIE °. Bernoulli wavelet based
on the numerical method was developed for the
solution of Abel’s integral equations . A numerical
solution of weakly singular fractional partial integro-
differential equations using Bernoulli polynomials
was established 2. Bernoulli polynomials and
Bernoulli numbers are used to construct the
orthonormal polynomials by using Gram-Schmidt
orthogonalization to solve Abel-type integral
equations 3. For the solution of variable-order
fractional optimal control affine problems, Bernoulli
polynomials were used 4. A method for solving the
nonlinear Volterra-Fredholm-Hammerstein integral
equations using orthonormal Bernoulli polynomials
is considered *°. To achieve the approximate solution
of the linear singular stochastic It6-VIE, the
orthonormal Bernoulli collocation method was

Materials and Methods

Bernoulli Polynomials:

Researchers have employed the Bernoulli
polynomials to solve many different kinds of
equations. Although these polynomials have certain
useful properties, they miss the orthogonality

developed %, According to the Bernoulli
polynomials, fractional-order Bernoulli wavelets are
created and used to determine the numerical solution
of the Caputo fractional order diffusion wave
equations in their general form !, The numerical
approach for multi-term variable-order fractional
differential equations that are based on Bernoulli
polynomials are employed 8. The first and second
types of linear Abel integral equations were
introduced and solved using Boubaker polynomials
9 Finally, for solving the VIE of the second kind
with a weakly singular kernel, a numerical technique
combining a series solution and conformal mappings
was presented 2° .

In this paper, Bernoulli polynomials are
suggested to construct an approximate solution for
the integral equation of singular and weakly singular
kernel of the form:

u(x) = f(0) + [ K(x, Du(®de 1
or,

u(®) = () + [} K(x,Du(t)dt 2
Such that f(x) is a continuously defined function in
the closed interval [a,b] , where aand b are
constant, and u(x) is the unknown function defined
on L?[a, b], to be determined, K (x, t) is a singular or
weakly singular kernel, not that the given kernel

k(x,t) takes the form k(x,t) = (; O<ax<l1

x—t)* "’

or k(x,t) = 7,0 < < 1. The following is how
the paper is organized: Section 2 defines the
Bernoulli polynomial as well as some frequently
used formulas. A description of the suggested
technique can be found in Section 3. Sections 4 and
5 include the algorithm and convergence analysis of
the proposed method respectively. In Section 6, the
suggested approach is used to solve a few test
problems employing the new technique. A
comparison with various approaches is also made.
Finally, a result and recommendation are provided in
section 7.

property. In this part, an accurate description of
Bernoulli polynomials is proposed and introduced:

Over time, it has become clear that Bernoulli's
numbers B,, and polynomials B, (z) are significant
mathematical elements. It is commonly known that
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the generating function for the Bernoulli
polynomials is?:

t © tk

e =i B(@) 4 3

Note that whenz = 0, B, = B,(0) are called the

Bernoulli  numbers.  Additionally,  Bernoulli
polynomials are described by 22
n _
Ba(2) = oo () Bz ™ 4

and the explicit formula:

n 1
=041

Ba(2) = o1 () G

5

i il . .
where (l)_m The Bernoulli polynomials

that will be employed in this paper is Eq 5. These are
the first eight Bernoulli polynomials:

B,(z) =1,

1
Bl(z)—z—E,
Bz(z)=zz—z+%,

—,3_3,2,1
B3(z) =z Sz tsz,

B,(z) = z* — 223 + z% — %,

5 5 1
Be(2) =2z -2z -27234+- 2
5(2) > 3 +6 ,
5 1 1
Bg(z) =2z%—3z°+22z% —-z2 + —,
2 2 42

7 1
—--z3+-z,

—,7_7,6,7.5
B,(z) =z SZ0 5z =~ S

14 7 2 1
Bg(z) = z8—4z"+—25 -~z + 22?2 — —,
3 3 3 30

and so on.
Description of the new technique:

The current section discusses introducing a new
numerical approach to solving the integral equation
with the singular or weakly singular kernel (Eq 1 or
Eq 2), using the Bernoulli polynomial by assuming
that:

uy (x) = CTB(x) 6

where C is a (M + 1) x 1 vector with unknown
elements, M is the degree of the approximated
polynomial, and B(x) is the Bernoulli basis
vector(M + 1) x 1 given by Eq 5. Now, substitute
Eq 6 in Eq 1 or Eq 2 yields:

CTB(x) = f() + [} K, O(CTB@®)dt 7

or,

CTB(x) = f(x) + [L K(x,)(C"B(t))dt 8

which gives:

CTB(x) — CT [T K (x, )B(Ddt = f(x) 9
or,
C"B(x) - CT [P K(x,)B(O)dt = f(x) 10

assume that:

a(x) = [T K(x,t)B(t)dt and B(x) =
[2 K (x, ©B(£)dt 11

Substituting Eq 11 in Eq 9 and Eq 10, to obtain:

CT[B(x) —a(x)] - f(x) =0 12
or,
CT[B(x) = B(x)] — f(x) =0 13

First, compute the integrals in Eq 11, to find the
value of  a(x) or B(x), therefore collect the
coefficients of like powers of x in Eq 12 or Eq 13. To
derive a recurrence relation in ¢;,j =0, next
compare the coefficients of like powers of x on both
sides of the resulting equation. The coefficients
¢j,j = 0 can be completely determined by solving
the recurrence relation. The series solution is
obtained by replacing the derived coefficients after
determining the coefficients in Eq 6. In the section
that follows, the test problems are discussed to
demonstrate the efficacy of the suggested strategy.

Algorithm for the Proposed Approach:

To solve Eq 1 [or Egq 2] using the Bernoulli
polynomial method, the following steps are
followed:

Step 1: Assume that f(x),k(x,t),aandb are
given.
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Step 2: Define the degree of the Bernoulli
polynomial M.

Step 3: Calculate the
0,1,...,M using Eq 11.

a;(x) [or B;(x)],i =

Step 4: Substituting the value of a(x)[or B(x)], that
obtained in step 3 in Eq 12 [or in Eq 13].

Step 5: Equating the coefficients of the powers of x
to obtain C.

Results and Discussion
Ilustrative examples:

In this section, Bernoulli polynomial in the
form wu,, (x) = CTB(x) are used to solve integral
equations with the singular or weakly singular
kernel. For each example, two cases with M=4 and
M=8 are employed. Also, a comparison with the
analytic solution is made depending on the absolute
errors to verify the accuracy and efficiency where:

Absolute Errors = Ey = |u(x) — upy (x)].

With u(x) and u,, (x) are the exact and
approximate solution respectively.

Test Example 1:Consider Abel’s integral equation
of the 1% kind™:

[P u()dt = %\/E(ws — 56x2 +

0 Vx-t
48x3) ,0<x<1 14

provided that the exact solution u(x)=x3 — x2 + 1.
Utilizing the suggested technique for M= 4 and 8 the
approximate solution is obtained as follows:

Case I: using M= 4.
First, substitute Eq 6 in Eq 14, which yields:

T
Jy S dt = - x(105 - 56x2 + 48x%) , and

hence:

fxCoBo(t) + ¢1B1(t) + ¢3B5(t) + c3B3(t) + c4By(t) dt
0

Vvx —t
2
—_ _ 2 3
=05 Vx(105 — 56x2 + 48x3).
Then,

Step 6: Obtain the solution u,, (x) by using the
obtained value of C in Eq 6.

Convergence and Error Analysis:

The convergence of the proposed method can be
obtained using the same manner as in %, to conclude
that: the sequence of error {|lu —uyll,}y=0 =
OasM — oo,

X By(t) x B1(t) x B, (t)

Co omdt'l'cl omdt'l'cz omdt"'
X B3 (t) X By(t) _ 2
c3 fy At + Omdt—ﬁx/;(los_

56x?% + 48x3).
Using Eq 11, to obtain:

Coto(x) + cray(x) + cpa(x) + cz3a3(x) +

Caty(x) = %\/}(105 — 56x% + 48x3) 15
. _ (XBi® .
Such that: ai(x) = [, ﬁdt i =
0,1,2,3,and 4 Computing a;(x),i =
0,1,2,3 and 4, hence:
(4x —3)
ao(x) = 2%/;5 al(x) = T %/E ) az(X)
16x%—20x+5,
- 15 '\/;r
2_
as(x) = ZW Ux3, and a,(x) =
256 x*-567 x3+336 x2-21
315 V.

Substituting the value of a;(x),i = 0,1,2,3and 4 in
Eq 15, then equating the coefficients of the powers
of x to obtain CT:

CT
_ 0.91666666666666666666666666666666,]
N —6.1875 x 10733,0.5,1.0,0 ’

which leads to:

Uy (%)

= 3 — x2

— 1.5000000356133419855416241048822
x 10733 x + 1.

Case Il: using M= 8.
Page | 3820
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Using the same manner as in case I, for M=8, the
following CT and approximate solutions are
obtained:

CT
0.91666666666666666666666666666666,
(—6.1875) x 10733,0.5,1.0,0,0,0,0,0 |’

andug (x) =x3 — x% +
(1.5000000356133419855416241048822 x
10733 )x + 1.

Table 1 gives the absolute error calculated between
the exact and approximated solution using the
proposed method with M=4 and 8 for some points in
the domain [0,1] with h = 0.1. Also, Comparing the
results obtained in the two cases with those obtained
in* using the Bernoulli wavelet method concludes
that the proposed method gives a better
approximation as shown in Table 2.

Table 1. Absolute Error for M=4 and 8 of Test Example 1

X; E4 Eg
0 0 0

0.1 1.50000003561334e-34 1.50000003561334e-34

0.2 3.00000007122668e-34 3.00000007122668e-34

0.3 4.50000010684003e-34 4.50000010684003e-34

0.4 6.00000014245337¢-34 6.00000014245337e-34

0.5 7.50000017806671e-34 7.50000017806671e-34

0.6 9.00000021368005e-34 9.00000021368005e-34

0.7 1.05000002492934e-33 1.05000002492934e-33

0.8 1.20000002849067e-33 1.20000002849067e-33

0.9 1.35000003205201e-33 1.35000003205201e-33

1 1.50000003561334e-33 1.50000003561334e-33
Table 2. Maximum Absolute Error of Test Example 1

Absolute Bernoulli polynomial Bernoulli polynomial Bernoulli wavelet
Error N = 4,u,(x;) N = 8,ug(x;) method

1.500000035613342¢-33

1.500000035613342¢e-33

1.33e-15

Test Example 2:Consider Abel’s integral equation
of the 2" kind *:

u(x) = x? +§x5/2 [F== U g

)= 16

, provided that the exact solution u(x)=x2. By using
the proposed method for M= 4 and 8 the approximate

solution is obtained as follows:
Case I: using M=4

First, substitute Eq 6 in Eq 16, which yields:

[XE72O 4t | and hence:

T — 24 16 5/2
C'B(x)=x + X 0 Vit

CoBo(x) + ¢1B1(x) + ¢3B5(x) + c3B3(x) + c4B,(x)

6
=x?+ ExS/
_ J CoBo(t) + ¢1B1 () + ¢;B,(t) + c3B3(t) + ¢4 B, (t) dt
0 Vvx —t
x Bo(t)
Then, Co[Bo(x) + f dt] + ¢1[By(x) +
Jo 2D de] + ¢, B, (0 + J BZ“’ 2] +
&3 [Bs(0) + [y 22 dt] + ¢, [B4<x) +
foxjﬂdt] 2+1—§x5/2.

Using Eq 11, to obtain:
Co[Bo(x) + ao(x)] + c1[B1(x) + a3 (x)] +
C2[B2(x) + az ()] + ¢3[B3(x) + az(x)] +
Ca[Ba(x) + ay(x)] = x? + Exs/z 17
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Such that a;(x) = f(j‘%dt i=0,1,23and 4.

Computing a;(x),i = 0,1,2,3 and 4, to obtain:

o (x) = 23/%, &, (x) = @%,azm

_16x*—20x+5

2
G Vx,
48 x%2 — 84x + 35
as(x) =2 105 Vx3, and a,(x)
256 x* — 567 x3 + 336 x? — 21 5
N 315 vx.

Substituting the value of «;(x),i = 0,1,2,3 and 4 in
Egq 17, then equating to the coefficients of the
powers of x to obtain C7:

CT
=[0.33333333333333333333333333333333,
1.0,1.0,0,0],

which leads toiu, (x) = x? —

3.3333332594149330378849231885313 *
10734,

Case Il: using M= 8.

Using the same manner as in case I, for M=8, the
following €T and approximate solutions are
obtained:

CT
=[0.33333333333333333333333333333333,

1.0,1.0,0,0,0,0,0,0],

and ug(x) = x2 —
3.3333328002374522479288653882436 X
10734,

Table 3 gives a comparison between the exact and
approximated solution using the proposed method
with M=4 and 8 for some points in the domain [0,1]
with h = 0.1 using absolute errors. Also, Comparing
the results obtained in the two cases with those
obtained in “ using the Hybrid Orthonormal
Bernstein and Block-Pulse functions wavelet method
concludes that the proposed method gives a better
approximation as shown in Table 4:

Table 3. Absolute Error for M=4 and 8 of Test Example 2

Eg

Xj E,

0 3.33333325941493e-34
0.1 3.33333325941493e-34
0.2 3.33333325941493e-34
0.3 3.33333325941493e-34
0.4 3.33333325941493e-34
0.5 3.33333325941493e-34
0.6 3.33333325941493e-34
0.7 3.33333325941493e-34
0.8 3.33333325941493e-34
0.9 3.33333325941493e-34

1 3.33333325941493e-34

3.33333325941493e-34
3.33333325941493e-34

3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34
3.33333325941493e-34

Table 4. Maximum Absolute Error of Test Example 2

Absolute

Bernoulli polynomial Bernoulli polynomial HOBW.#
EI’I’OI’ N = 4,u4(xi) N = 8,u8(x,-) M:32,K:6
3.333333259414933e-34 3.333333259414933e-34 3.51e014

Test Example 3: Consider the following 2" kind
Weakly singular Fredholm integral equation 2:

_ .2 _ 16 1 u(t)
u(x) =x 15+f0 J_1_—tdt 18

Provided that the exact solution u(x) = x2. By
using the proposed method for N=4 and 8 the
approximate solution is obtained as follows:
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Case I: using M= 4.
First, substitute Eq 6 in Eq 18, which yields:

16 flcTB(t)
15 J0 i-t

CoBo(x) 4 ¢1B1 (x) + 3B, (x) + c3B3(x) + c4By(x) = x?
16

C"B(x) = x? —

dt, hence:

T 15
" J’l CoBo(t) + ¢1B1(t) + c3B5(t) + c3B3(t) + c4B,(t) dt
0 V11—t
Then co[Bo(x) — f 22 200 4] + ¢y [By (x) —

foljl(_t)dt] + ¢;[By(x) — lez(t) dt] + c3[B3(x) —

1B5(t) 1B (t) 16
Jo \/3_dt] + ¢4 [By(x) — f —dt] =x*——.

Using Eq 11, to obtain:

Co[Bo(x) — Bo(x)] + c1[B1(x) — By (x)] +
C2[B2(x) — B2 (x)] + c3[B3(x) — 563(75)] +

cs[Bs(0) — By ()] = x> = 32
19

Such that Bi(x) = |, ﬁdt i =

0,1,2,3,and 4. Computing B;(x),i = 0,1,2,3 and 4,
hence:

1 1
Po(x) =2, p1(x) = 3 P2 (x) = 15’
2 _
ps3(x) = —m and f,(x) = E

Substituting the value of B;(x),i = 0,1,2,3and 4 in
Eqg. 19 then equating to the coefficients of the powers
of x to obtain CT:

CT
=[0.33333333333333333333333333333334,

1,1,0,0],

which leads to: u, (x) = x? +
3.6666666771919224996646270674419 X
10733,

Case Il: using M= 8.

Using the same manner as in case |, for M=8, the
following CT and approximate solutions are
obtained:

CT
=[0.33333333333333333333333333333334,

1,1,0,0,0,0,0,0],

and ug(x) = x? +
3.6666667231096705786602328474707 X
10733,

Table 5 gives a comparison between the exact and
approximated solution using the proposed method
with M=4 and 8 for some points in the domain [0,1]
with h = 0.1 using absolute errors. Also, Comparing
the results obtained in the two cases with those
obtained in? using the Euler—Maclaurin summation
formula concludes that the proposed method gives a
better approximation as shown in Table 6.

Table 5. Absolute Error for M=4 and 8 of Test Example 3

Eg

X; E,

0 3.66666667719192e-33
0.1 3.66666667719192e-33
0.2 3.66666667719192e-33
0.3 3.66666667719192e-33
0.4 3.66666667719192e-33
0.5 3.66666667719192e-33
0.6 3.66666667719192e-33
0.7 3.66666667719192e-33
0.8 3.66666667719192e-33
0.9 3.66666667719192e-33
1 3.66666667719192e-33

3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
3.66666672310967e-33
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Table 6. Maximum Absolute Error of Test Example 3

Absolute Bernoulli polynomial Bernoulli polynomial Euler-Maclaurin
Error N = 4,u,(x;) N = 8,ug(x;) formulas ?
n= 256
3.666666677191922¢e-33 3.666666723109671e-33 5.0214e-06

Test Example 4: Consider the following Weakly
singular Fredholm integral equation %

- 40602+ [} Fdt ,0<t<1
20

u(x) =e*

provided that the exact solution u(x) = e*. By
using the proposed method for N=4 and 8 the

approximate solution is obtained as follows:
Case I: using M= 4.

First, substitute Eq 6 in Eq 20, which yields:

CTB(x) = e* — 4.0602 + |, < B_(t) dt, therefore:
coBo(x) + ¢1B1(x) + c2B,(x) + c3B3(x)
+ ¢4 B4 (%)
=e* —4.0602
n fl CoBo(t) + ¢1B1(t) + 3B, (t) + c3B3(t) + c4By(2t) dt
0 V11—t
Then, co[Bo(x) — f 22 200 4] + ¢4 [By (x) —

fol?(—”dt]wz 1B, ) - f”z(”dt ¥ s[B5 () -

f01 BL“) dt] + c4[B,(x) — le‘*(t) dt] -

4.0602.

Using Eq 11, to obtain:

Co[Bo(x) — Bo(x)] + ¢1[B1(x) — B1(x)] +
c2[B2(x) = B2 ()] + c5[B3(x) — f3(x)] +
C4[Bs(x) — B4 (x)] = e* — 4.0602,

21

Such that Bi) = [, jﬂdt i=

0,1,2,3,and 4. Computing B;(x),i = 0,1,2,3 and 4,
hence:

fo) =2 ﬁl(x)=l ﬁz(x)=1—15, B3(x) =

—Z and f(x) = 2.

Substituting the value of 8;(x),i = 0,1,2,3 and 4 in
Eqg. 21 then equating to the coefficients of the powers
of x to obtain CT:

CT
=[1.7239566137566137566137566137566,

1.708333333333333333333333333
,0.83333333333333333333333333333333,
0.25,0.041666666666666666666666666666667|

’

which leads to:

u,(x) = 0.04166666667x* + 0.1666666667x3

+ 0.5x%2 + x + 1.007289947
Case I1: using M= 8.

Using the same manner as in case I, for M=8, the
following €T and approximate solutions are
obtained:

CT
=[1.7183263140454316924905160199278,

1.7182787698412698412698412698
,0.85912698412698412698412698412698,
0.28634259259259259259259259259259
,0.071527777777777777777777777777778,
0.014236111111111111111111111,
0.0023148148148148148148148148148148,
0.00029761904761904761904761904761905
,0.000024801587301587301587301587301587],

and
ug (x)=0.0000248015873x® + 0.0001984126984x’
+ 0.001388888889x° + 0.008333333333x°> +
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0.04166666667x* + 0.1666666667x° + 0.5x* + X +
1.000044788.

Table 7 gives a comparison between the exact and
approximated solution using the proposed method
with M=8 for some points in the domain [0,1] with

h = 0.1 using maximum absolute errors (MSE).
Also, Comparing the results obtained in the two
cases with those obtained in 2 using the Euler—
Maclaurin summation formula concludes that the
proposed method gives a better approximation as
shown in Table 8.

Table 7. Absolute Error for M=4 and 8 of Test Example 4

Xj E, Eg

0 0.00728994700000007 4.47880000000733e-05
0.1 0.00728986225771945 4.47880000309532e-05
0.2 0.00728718884010224 4.47879988322984e-05
0.3 0.00726863942492397 4.47879450125230e-05
0.4 0.00719858269428176 4.47872498343305e-05
0.5 0.00700617630424693 4.47823402004411e-05
0.6 0.00657114661712310 4.47584742448357e-05
0.7 0.00570807287509055 4.46684983103492e-05
0.8 0.00414901852596447 4.43862560401655e-05
0.9 0.00152433586953740 4.36158180535793e-05

1 0.00265854808904517 4.17294186548285e-05

Table 8. Maximum Absolute Error of Test Example 4

method Bernoulli polynomial Bernoulli polynomial
N = 4', u4(xi) N = 81 us(xi)
M.S.E 0.007289947000000 4.478800003095322¢e-05

Test Example 5: Consider the VIE of 2™ kind with
a weakly singular kernel 24

u(@) = F0) + [ o u(t) de 22

, Where f(x) = 0.71428571x3 ,and exact solution
u(x)=x3 for u = 0.5. By using the proposed method
for M= 4 and 8 the approximate solution is obtained
as follows:

Case I: using M=4
First, substitute Eq 6 in Eq 22, which yields:

-1
C"B(x) = 0.71428571x + [ “— C"B(t)dt, and
hence:

CoBo(x) + 1By (x) + ¢;B,(x) + c3B3(x)
+ 4By (x)
=0.71428571x3

X tﬂ—l
[ (@Bo® + B
0 X

+ 3B, (t) + c3B3(t)
+ 4B, (1))dt.

Then,

x gu—1
Co [BO(X) — J;) x_liBO(t)dt]

_ X pu-1 .
+ B — —— B, (t)dt
1 _ 1(x) , Xk 1(®) _

- x -1 .

+ Cz _Bz(x) - . x_#Bz(t)dt_
- x -1 .

+ B — —— B, (t)dt
C3 _ 3(x) , x# 3(t) _

- x -1 :

+ B — — B, (t)dt
Cq [B4(x) . xH 4 (1) _

= 0.71428571x3.
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Using Eq 11, to obtain:

Co[Bo(x) — ao(x)] + ¢1[B1 () — ay (X)] +
C2[B2(x) — @z (X)] + ¢3[B3(x) — az(x)] +

5
Ca[Ba(x) — ay(x)] = x? + gxi. 23
xth?t
Such that ai(x) = [, — Bi(Odt i=
0,1,2,3,and 4. Computing a;(x),i = 0,1,2,3 and 4,

to obtain:

2%Xx
ag(x) =2, ay(x) =——— lay(x)

3
2xx% 2xx 1
= S +§,a3(x)
2xx3 3xx?
-7 s
x
+§ and a4 (x)
_Z*x4 4*x3+2*x2 1
9 7 5 15

Substituting the value of @;(x),i = 0,1,2,3 and 4 in
Eq 23, then equating to the coefficients of the powers
of x to obtain CT:

CT
=[0.24999999849999998691174596388009,

0.99999999399999994764698,
1.4999999909999999214704757832806,
0.99999999399999994764698385552037,0],

which leads to:

Uy (x)

= 0.99999999399999994764698385552037x3
— 1.4999998519423496695592009847671

x 10733x

— 5.0000005778886207417614714832285

x 10734,

Case I1: using M= 8.

Using the same manner as in case I, for M=8, the
following €T and approximate solutions are
obtained:

CT
=10.24999999849999998691174596388009,

0.99999999399999994764698385552
,1.4999999909999999214704757832806,
0.99999999399999994764698385552037,

0,0,0,0,0], and

ug(x) =
0.99999999399999994764698385552037x3 —
1.4999998519423496695592009847671 X
10733x —
5.0000005778886207417614714832285 X
10734,

Table 9 gives a comparison between the exact and
approximated solution using the proposed method
with M=4 and 8 for some points in the domain [0,1]
with h = 0.1 using absolute errors. Also, Comparing
the results obtained in the two cases with those
obtained in 2* using non-smooth solutions concludes
that the proposed method gives a better
approximation as shown in Table 10:

Table 9. Absolute Error for M=4 and 8 of Test Example 5

X; E, Eg

0 5.00000057788862e-34 5.00000057788862e-34
0.1 6.00000005235302¢e-12 6.00000005235302e-12
0.2 4.80000004188241e-11 4.80000004188241e-11
0.3 1.62000001413531e-10 1.62000001413531e-10
0.4 3.84000003350593e-10 3.84000003350593e-10
0.5 7.50000006544127e-10 7.50000006544127e-10
0.6 1.29600001130825¢-09 1.29600001130825e-09
0.7 2.05800001795708e-09 2.05800001795708e-09
0.8 3.07200002680474e-09 3.07200002680474e-09
0.9 4.37400003816535e-09 4.37400003816535e-09

1 6.00000005235302e-09 6.00000005235302e-09
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Table 10. Maximum Absolute Error of Test Example 5

Absolute Bernoulli polynomial Bernoulli polynomial HOBW. %
Error N = 4,u,(x;) N = 8, ug(x;) M=32,K=6
6.000000052353016e-09 3.333333259414933e-34 3.51e014

Test Example 6: Consider the VIE of 2™ kind with
a weakly singular kernel %

3 x u(t)

32 7 4 8
u(x)—l—Zx—Zx4+§x4—f0

_dt
(x—t)s

24

, Where the exact solution is u(x)=1 — 2x. By using
the proposed method for M= 4 and 8 the approximate
solution is obtained as follows:

Case I: using M=4

First, substitute Eq 6 in Eq 24, which yields:

3

7
CTB(x) =1—2x — %xi + %xZ -
Iy L _CTB(t)dt, and hence:

(x-t)%
CoBo(x) + 1By (x) + c3B5(x) + c3B3(x)
+ 4By (x)

RPN % S
= XT3

X
By
0

(x —t)%

3
x4
(CoBo(t) + ¢1B1(t) + 3B, (t)

+ c3B3(t) + 4By (D)) dt.

Then,

Co [BO (x) + f ——B, (t)dt] + ¢ [Bl (x) +

xt)

fo"( 1 Bl(t)dt + ¢, |By(x) +
xX—t)4 |

fo"( 1 Bz(t)dt + 3 |Bs(x) +
xX—t)4 |

[ — ( B3(t)dt + ¢4 [Ba() +

x—t)4 |
[ B(t)dt 1-2x—2yitiy
S 4 = X =X+ oxn

Using Eq. 11, to obtain:

co[Bo(x) + ag(x)] + ¢1[B1(x) + a;(x)] +
c2[B2(x) + az(x)] + c3[B3 (x) + a3 (x)]3

C4[Ba(x) + a4(x)] =1—-2x — —x4 +2 sx+ 25

Such that  a;(x) = [ ——
(x—t)%
0,1,2,3,and 4. Computing a;(x),i = 0,1,2,3 and 4,

to obtain:

B;(t)dt , i =

a0 () = (4x9)/3, a1 (x)
= (Zx%(8x — 7))/21,a,(x)

3
= (2x%(192x% — 264x
+ 77))/693, az(x)

3
= (2x%(256x3 — 480x?

+ 220x))/1155,

and a,(x) = (2x3/4(12288x* — 29184x>
+ 18240x% — 1463))/65835

Substituting the value of a;(x),i = 0,1,2,3 and 4 in
Eqg. 25, then equating to the coefficients of the
powers of x to obtain C7:

¢ =10,-2.0,0,0,0],
which leads to: u,(x) = 1 — 2x.
Case I1: using M= 8.

Using the same manner as in case I, for M=8, the
following CT and approximate solutions are
obtained:

¢T =1[0,-2.0,0,0,0],
and ug(x)=1 — 2x.

Table 11 gives a comparison between the exact and
approximated solution using the proposed method
with M=4 and 8 for some points in the domain [0,1]
with h = 0.1 using absolute errors. Also, Comparing
the results obtained in the two cases with those
obtained in ?° using non-smooth solutions concludes
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that the proposed method gives a better

approximation as shown in Table 12:

Table 11. Absolute Error for M=4 and 8 of Test Example 6

Kol
2]
-

2]
©

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

O O O O O OO oO o oo

O O O O O OO oo oo

Table 12. Maximum Absolute Error of Test Example 6

Absolute Bernoulli polynomial Bernoulli polynomial Taylor collocation
Error N = 4,u,(x;) N = 8, ug(x;) N=8%°
0 0 1.28571 x 1078
Conclusion

In this study, integral equations with singular
or weakly singular kernels are solved using
Bernoulli's polynomial approach. The Bernoulli
polynomial approach was used to resolve several
associated examples. The numerical data and tables
that are presented demonstrate the method's
effectiveness and precision. noticed that when
increasing the degree of the proposed technique, the
error decreases. In addition, the numerical results
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