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Abstract:

Interval methods for verified integration of initial value problems (IVPs) for
ODEs have been used for more than 40 years. For many classes of IVPs, these
methods have the ability to compute guaranteed error bounds for the flow of an ODE,
where traditional methods provide only approximations to a solution. Overestimation,
however, is a potential drawback of verified methods. For some problems, the
computed error bounds become overly pessimistic, or integration even breaks down.
The dependency problem and the wrapping effect are particular sources of
overestimations in interval computations.

Berz (see [1]) and his co-workers have developed Taylor model methods, which
extend interval arithmetic with symbolic computations. The latter is an effective tool
for reducing both the dependency problem and the wrapping effect. By construction,
Taylor model methods appear particularly suitable for integrating nonlinear ODEs. In
this paper, we analyze Taylor model based integration of ODEs and compare Taylor
model with traditional enclosure methods for IVPs for ODEs.

More advanced Taylor model integration methods are discussed in the algorithm
(1). For clarity, we summarize the major steps of the naive Taylor model method as
algorithm 1.
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Introduction explain the fundamental difference

Tay[or model methods use between interval methods and Tay](}r

multivariate polynomials in the initial
values plus a small interval remainder
term to represent the flow of an IVP.
Thus, it is possible to work with
nonlinear boundary curves. Including
non-convex enclosure sets for crescent-
shaped or twisted flows. For non linear
ODEs, this increased flexibility to
admissible boundary curves is an
intrinsic advantage of Taylor model
methods over traditional interval
methods, making Taylor methods very
effective in some cases in reducing the
wrapping effect.

We refer to recent paper of
Makino and Berz[2] for the general
description of Taylor model methods
for ODEs. Our intention here is to

model methods with a simple nonlinear
examples.

Shrink Wrapping and
Preconditioning

For successful integration over
long time  spans, sophisticated
treatment of the interval terms is
required. For this purpose, Berz and
Makino see [3] invented two schemes
which they call shrink wrapping and
preconditioning. Shrink wrapping is a
method to absorb the interval reminder
term into the symbolic part of the
Taylor model. From a geometric
viewpoint, it resembles the
parallelepiped method. Shrink
wrapping use the same linear map as
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the parallelepiped at maintaining a
small condition number for the shrink
wrapping map. Thus it stabilizes the
integration process, like the QR
interval method does.

For clarity of the presentation,
we describe the shrink wrapping and
preconditioning for the special case of
linear autonomous ODEs.  The
generalization to nonlinear ODEs are
straightforward. We refer to [4] for
more details.

Taylor Model Methods for
Linear ODEs

For a linear ODE, the flow of an
interval IVP is a parallelepiped for all
time, so Taylor models seems to have
no obvious advantage over interval
methods. On the other hand, if Taylor
model methods failed on linear ODEs,
they would probably not be effective
for nonlinear ODEs. The purpose of
this selection is to show that they can
be as good as interval methods for
linear ODEs.

Consider the linear autonomous
ODE;

U'=BU
U=,

Where B is a given real matrix, x
is a given interval vector, and

Uy = Pn(x), x € x, is a Taylor model
vector with zero remainder interval
describing the initial set. x is used to

n
T LP,,(X)+{_J | +J-B(P,,('[B)T" 'P,,(,\’)Jr.fj

0

Is fulfilled for all x € x letting:

Uii =Tu. +i;, j=12,.........(4)
The naive Taylor model method
for (1) consists of the iteration

U =TU,+ ) (1), j=12,...05)

k=1

denote the vector of the step space
variables. Assume that the enclosure
step in the Taylor model method is
feasible with some constant step size
h > 0 and some order n € N.

Naive Taylor Model method

In the first integration step,
Picard integration of order n is used to
compute the multivariate Taylor
polynomial:

U,, =P, (tB)P,(x)

In

n tB k
Where P, (tB) =) ( kl)

k=0 .
introducing T P.(hB), the
verification step consists of finding an
interval 1, such that:

h
P,(x)+ [ B(P(TB)P,(x) + i,)dI <

P (hB)P,(x)+i, =TP,(x) + i,
holds for all x € x (see for example [2,
ch.6]. At t,=h, the flow of the IVP (1)
is then enclosed by the Taylor model
Ul :=TPn(x)+ip.......... (2)
Subsequent integration steps are
performed in the same manner, but
with a slight modification in the
verification step. In the j" integration
step, j = 2, i is sought such that the
inclusion

YT ST/ Py (X))o, 3)

Where (To)’x = x, (To)*x = T.
{(T(,)k_l x), k € N. A part from the
different computation of the remainder
interval, for IVP(1). The naive Taylor
model method (5) coincides with the
direct interval method that occurs in
[6]. Hence the naive Taylor model
method (5) has the same divergence
property as the direct interval method,
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for which it was shown in [6] that after
j steps we have:

w((T) i) =T W) (6)

(for A = (a;), we denoted by |A|
the matrix with components |a;|). The
key point here is that the spectral
radius of [T may be much larger than
spectral radius of T which describes
the natural error growth of a point
method. If this is the case, the error
bounds for the naive Taylor model
method may be much larger than the
true error.

Naive Taylor Model Method
with Shrink Wrapping

Berz and Makina [2] defined
shrink wrapping as a method for
absorbing the interval part of the
Taylor model into the polynomial part
by  modifying  the  polynomial
coefficients. The set defined by the
sum of the giving polynomial and
interval is wrapped by a set defined by
a pure polynomial. The new set may be
larger than the initial set, but it is less
prone to the dependency problem and
to the wrapping effect in succeeding
calculations.

In the wverified integration of
ODEs, shrink wrapping 1s usually
applied to the Taylor model enclosures
of the flow at the grid points, before
continuing the integration. In practical
computations, shrink wrapping is
performed when the size of the interval
remainder  term  exceeds  some
heuristically chosen bound. After
shrink wrapping, the initial set of the
subsequent integration step is purely
symbolic, which removes the
dependency problem and simplifies the
verification step. The success of Taylor
model based integration method
depends on the successful reduction of
the excess introduced in the shrink
wrapping process.

The process of applying shrinks
wrapping to a Taylor model vector:

U:=PxX)tLXxEX.......... (7)
Is described in [11]. Here we
only outline its four basic steps.

First, let U denoted the Taylor
model that is obtain when the constant
part of P is removed.

Second, multiply U by the
inverse of the matrix associated with
its linear part and obtain the Taylor

model U .

Third, estimate the nonlinear
part of fJ its Jacobian, and the
interval term of U, to obtain the shrink
wrap factor q = 1.

Forth, multiply the polynomial

part of Uwith q and add the constant
part of U.

We illustrate shrink wrapping
with the following nonlinear example.
For clarity, we use two scalar Taylor
models U and v instead of a Taylor
model vector, the symbolic variables
are denoted by a and b (instead of the
vector x).

Example: Absorption of the
interval part into the symbolic part of a
Taylor model. We consider the Taylor
model vector (U, v)T, where:

U(a,b) =2 +4a+%a: +[-0.2,0.2]

V(a,b):=1+3b+ab+[-0.1,0.1]
Where a,be[-11].......... (8)

The set defined in (8) is shown in
fig 1. Following the above outline, we
obtain:

U(a.b):=4a +%a3 +[-0.2,0.2]

V(a,b) = 3b+ab+[-0.1,0.1]....... (9)
The matrix associated with the
linear part of the Taylor model (9) is
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4 0 _ -1
C= 5 multiplying (9) by C7,

yields:
U(a,b) = a+éa3 +[-0.05,0.05]

V(a,b)=b +}ab +[~0.034,0.034]
3

Estimating the nonlinear part and
the interval terms as described in [2],
and compute the numbers s, t, and d
that satisfying

s> 1a:,sz %ab foralla,be[-1,1],
o |
1 1 1
t= Za,ta gb,tafa,forall a,be[-1.1]

d=0.05,d =0.034

These conditions are fulfilled for
s =1t =1/3 and d = 0.05, from which
one can deduce the shrink warp factor.
1 89
gl = (10)
(I-t)(1-s) 80
The final Taylor model after
shrink wrapping is:
9 9
U, (a,b)= 2+£a+La',
’ 80 160
287 890
V. (@ab)=1+"""b+——ab...... (11)
’ 80 80
As Figure 1 show, the set defined

by (11).

v

Fig. 1: Sets of Tavior models before (Eq. (8)) and after shrink wrapping (Lq. (11)).
The dotted line is the boundary of the set that is described by the polynomial of the
original Tavior model. The white area is the set described by the original Tavior
model, including the interval term. The excess area introduced by shrink wrapping is

shaded in grey.

Applying shrink wrapping in the
linear model problem (1) is rather
simple. For simplicity, let us assume
that the shrink wrapping is performed
in every integration step. Then we
must compute [11].

q,=1+d /2, whered, = Hw((T') ]i‘)H,

if T is sufficiently well-condition, and
if the interval terms are sufficiently
small, then the factor d; are almost
zero, and shrink wrapping is feasible
for many integration steps.
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The naive Taylor model method
with shrink wrapping resembles the
parallelepiped method. By multiplying
the non-constant coefficients of the
Taylor  polynomial,  for  linear
autonomous ODEs the interval term is
absorbed as in the parallelepiped
method. While T' is well-conditioned,
d;is small, and so is the excess area.
On the other hand, q; (and the excess
area) becomes large if T' become ill
conditioned, which is eventually the
case if T has eigenvalues of different
magnitude. In this case the integration
breaks down due to the growth of the
Taylor polynomial coefficients.

Algorithm 1 (Naive Taylor
Model Method)

Let the initial set be given as a
Taylor model vector in m space
variables.

Forj=0,1, ..., Juas1:

1. Compute the Taylor polynomial P,
(of dimension m in m+1 variables)
of the solution of the j+1 time step,
using Picard iteration.

3]

. Compute a remainder interval
vector i, using S chander's fixed
point theorem (via interval iteration
based on Picard iteration).

3. Evaluate u =P, +1, the resulting m-
dimensional Taylor model u which
contains the flow of the IVP and
serves as initial set for the next time
step.

Quadratic Model Problem

Consider the quadratic model
problem:

u'=v, u(0) €[0.95,1.05],

V=u' W0)e[-1.05-097],..(12)
Where the differentiation is with

respect to t. In an interval method, one

would use interval initial values ug =
[0.95, 1.05] and vo = [-1.05, -0.95]. In

the Taylor model method, the initial set
is described by parameters, which we
call a and b, and which we choose on
the interval [-0.05, 0.05]. The initial
conditions of IVP(11) at t = to are thus
given by:

U,(a,b)=1+a
V.(a,b)=-1+b

aca =[-0.05,005],
beb =[-0.05,0.05].

For illustration, we use order n =
3 and step size h = 0.1 in the Taylor
model integration of (11). All numbers
are displayed here rounded to six
decimal digits. In each integration step,
the multivariate Taylor series (with
respect to t, a and b) of the solution of
(11) is employed. The third-order
Taylor polynomial serves as an
approximate solution. The truncation
error of the series is enclosed by a
suitable reminder interval.

The first integration step consists
of integrating the IVP

u'=v, u(0)=1+a
vi=vi, viD)=—1+b............ (1
3)

For 0 <t < h. we use the Picard
iteration to calculate a multivariate
Taylor
polynomial approximation of the
solution to (12) using the initial
approximations
u” (T, a,b)=1+a, vV (T, a,b)=-1+
b (T is time), the first step of the
Picard iteration yields:

T
!'/m('!_' ah):{{](uh) +| V((D(.s'_ah)rl'.s:lJr(.'f?'Jr.’ﬂ'
) 0

7
P([)(T.ah) =16(ah) +_|'(DM(.\: ah))zd.\:—l+b+T+2nT+fr2T
0

After two more Picard iterations

(and omitting the higher order terms),

we obtain the third order Taylor
polynomials.

3 1 |

r'(')(1".0.!:)=l+a—]"+h1"+71"2 +a'!'2 sy ot

5 E

3
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VI ah)y=—l+b+T+2al

e B i 14)
+cri"4'“+b1‘+%]" :
J

As multivariate approximations
to the solution of (12). For verified
enclosure of the flow, the Taylor
polynomials have to be furnished with
suitable  reminder  bounds.  Their
derivation is based on fixed point
iteration [12]. Intervals iy and jy are
sought such that the inclusions:

U, +[(V¥(s.2,b)+j,)dsc UY(T,a,b)+i,

g
Y, + [(U(sa,b)+i, Y dsc V(T a,b)+j,

Simultaneously hold for all a €
a, forallb e b, and for all T € [0, 0.1].
For details of this computation of the
reminder interval, refer to [12]. In my
example, these inclusions are fulfilled.

Example 2: For iy = [-5.09307E-
5, 7.86167E-5] and jo = [-1.75707E-4,
1.60933E-4] An enclosure of the flow
of the IVP(12) for t € [0, 0.1] is given
by Taylor models:

Q(T,a,b).:1+afT+bT+%T3 +aT* -ilT‘ +H,,

\‘Nu.b) = Fl((.l.l.(r.l!) = —0.909333

(15)

3
+0.19a +1.01b +0.1a” + j,

Which is the initial set for the
second integration step. The latter is
performed with a slight modification.
we do not use the interval remainder
terms in 1y and v; when computing the
polynomial part of the Taylor model in
the space and time wvariables. The
Picard iteration is again performed for
T IS [0, 0.1],with initial
approximations:

U (7. a.b) = 0.904667 + 1.01a + 0.1b,

1-(0)

After three iteration (and again
omitting higher order terms), we obtain

U®(T,a,b) = 0.904667 + 1.01a+ 0.1 b
-0.909333T +0.19aT + 1.01bT +
0.400211T2 + 01T +
0.913713aT> + 0.0904667bT>
0.274215T°

V& (T,ab) = -0.909333 + 0.19a
1.01b - 0818422 T + 0.1a°
1.82743aT + 0.180933bT
0.180933bT - 0.822644T?
1.0201a°T + 0.202abT + 0.01b°T
-0.74654aT> + 0.82278bT> +
0.522429T*

To compute the interval reminder

++ 4+

Q(T,a,b):*1+b+T+2aT+afoT*7a]5+b13+_2f+j‘”term, we must find intervals i), ji
3

Where a, b € [-0.05, 0.05], T <
[0,0.1],and t=T.

Evaluating U, and V, at T=h=
0.1, we obtain the enclosure of the
flow at t; = 0.1 (Taylor models of order
at most 2 in the space variables):

u](a,b):: 17](0. Lab)=

0904667 +1.0la +0.15 + f(]‘

fulfilling the inclusions:

T o
ul(n..r’)] + | (\'(J) (s.a.b) +jl)r..’sg r{(") (F.a.b) +i1
0

T
3 2 3
s‘|(r:.b)+[(n( )(a“:.l>!+r|) :'ﬂsc_:rE )

0 T sumeesa (16)
(T.a.b)+ I

For all a, b € [-0.05, 0.05] and
for all T € [0, 0.1] (Note that iy and j,
are contain in U, and Vi, respectively,
from (14). Suitable reminder intervals
are, for example
iy € [-1.12850E — 4, 1.65751E — 4]
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ii € [-3.31917E — 4, 3.24724E - 4]

Thus, the flow IVP(12) for t €
[0.1, 0.2] is contained in the Taylor
models:

U,(T,a,b)=u"(T,a,b) +i,,
V: (T,a,b)=v"'(T,a,b) +],,

Where a, b € [-0.05, 0.05], T €
[0,0.1], t =T+ 0.1. Evaluating at T =
0.1, I obtain the enclosure of the flow
at t;= 0.2 (Taylor models at most 2 in
the space variables):

U,(T,a,b)=U,(0.1,a,b)= 0.817551+1.038 142 +0.201905b +0.01a> +i,,
V.(T,a,b)=V,(0.1,a,b) =—0.835195+0.365277a +1.03632b +0.20201a
0.0202ab +0.001b° +j,,

For larger wvalue of t, the
integration can be continued as in the
second integration step described
above. In te above example, we have
used the so-called naive Taylor model
integration method to illustrate the
qualitative  difference of interval
methods and Taylor model methods for
solving  (IVPs). For  practical
computations, the naive Taylor model
method is not very useful. The interval
remainder terms are propagated as in
the direct interval method. The
inclusion  (15) implies that the
diameters of the interval reminder
terms are nondecreasing. Often, these
diameters grow exponentially, and to
method break down early.

Conclusion

We have used traditional
enclosure methods with Taylor model
based integration. For the verified
solution of IVP's for ODEs, we have
shown how Taylor model methods
benefit from symbolic computations.
Increasd flexibility in  admissible
boundary curves of enclosures is an
intrinsic advantage over traditional
interval methods, not only for the
solution of ODEs. In future research,
we hope to contribute to the further
development and increased use of
Taylor model methods.
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