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Introduction 

With the increasing popularity of location-based 

services (LBS), users benefit from personalized 

services by sharing their location data1,2. However, 

location information can also reveal sensitive user 

activities, interests and habits, raising significant 

privacy concerns3,4. To address this issue, many 

location privacy protection approaches have been 

proposed, including k-anonymity5, cloaking6, 

differential privacy7, among others. However, most 

existing methods depend on fixed parameters or 

simple anonymization techniques without 

considering diverse user needs and location 

contexts2. This can result in insufficient or excessive 

privacy protection. Recognizing the limitations of 

current literature in addressing the dynamic nature of 

user privacy, this study contributes a novel approach 

by integrating insights from recent research with a 

forward-looking perspective on privacy protection in 

LBS. This approach is not only responsive to the 

immediate privacy concerns but also anticipates 

future challenges, paving the way for proactive and 

adaptive privacy strategies. 

To overcome the limitations of existing work, this 

study proposes a location privacy protection 

approach based on contextual awareness. The key 

idea is to evaluate users' diverse privacy needs by 

mining their historical location trajectories8. 

Specifically, contextual factors like visit duration, 

frequency and regularity patterns are extracted, 

which reflect users' privacy sensitivity towards 

different locations9. Furthermore, we estimate the 

degree of real-time privacy leakage based on the 

number of users concurrently sharing their 
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location10. By comparing the estimated privacy 

demand with real-time leakage, adaptive protection 

can be contextually provided for each user and 

location context. 

The major contributions of this work include: 

(1) We propose a context-aware location privacy 

protection model based on mining geographic and 

private attributes from historical trajectory data. 

(2) We design a context-aware location privacy 

protection method (CA-LP) that adapts to diverse 

user privacy needs. 

(3) We conduct extensive comparative experiments 

to validate the effectiveness of CA-LP over state-of-

the-art methods. 

To elucidate, the CA-LP method's primary advantage 

lies in its dynamic adaptability to both user behavior 

and the context of the location, a significant 

improvement over static privacy method. This study 

also synthesizes a broad spectrum of literature in 

location privacy, identifying the evolution of privacy 

protection strategies and underscoring the innovative 

aspects of our approach. 

Experiments on real-world datasets demonstrate CA-

LP achieves better overall privacy protection and 

service quality over existing solutions. 

The remainder of this study is organized as follows: 

Section II provides a review of the relevant literature, 

Section III describes the methodology and the 

proposed context-aware location privacy protection 

method, Section IV presents the results and 

comparative analysis, Section V discusses the 

implications of our findings, and Section VI 

concludes the study with reflections on future 

research directions.  

 

Related works 

Location privacy protection in LBS has been 

extensively studied in recent years. Existing 

solutions can be categorized into anonymity-based 

methods, obfuscation-based methods, and policy-

based methods. 

Anonymity-based techniques aim to anonymize user 

locations to prevent tracking and identification. K-

anonymity11 is a popular approach that replaces user 

IDs with pseudonyms and ensures a user is 

indistinguishable within groups of k users. Gedik et 

al.12 developed a personalized k-anonymity system 

for location privacy preservation. Spatial cloaking13 

is another anonymization approach that blurs user 

locations by enlarging the cloaked spatial area. 

Bamba et al.14 utilized quadtree-based cloaking areas 

for anonymous location-based queries. Although 

effective, anonymity methods rely on fixed 

parameters and often fail to adapt to diverse user 

contexts. 

Obfuscation-based approaches perturb or degrade 

the quality of location information to protect user 

privacy. Shokri et al.15 quantified location privacy as 

the error between original and observed locations 

and injected noise to satisfy privacy requirements. 

Geo-indistinguishability mechanisms16 achieve 

differential privacy by adding controlled noise to 

coordinates. Dummy-based methods17, 18 generate 

fake location samples to act as backups or shadows 

for the real user location. While obfuscation protects 

privacy, it can also reduce utility due to excessive 

distortion. 

Policy-based methods regulate access and usage of 

location data based on user-defined policies. Zhu et 

al.19 developed location sharing policies 

incorporating social groups and preferences in 

mobile social networks. Li et al.20 proposed t-

closeness to limit background knowledge gained 

from location data releases. However, defining 

comprehensive policies is challenging for average 

users. 

Recent studies have attempted to overcome 

limitations of above methods by considering 

dynamic user contexts. Huang et al.21 adjusted the 

level of protection by estimating the attacker's 

background knowledge. Lu et al.22 quantified 

dynamic privacy requirements but did not utilize user 

trajectory data. Our approach, which evaluates 

contextual privacy needs by extracting rich mobility 

features from user trajectories, achieves better 

personalization. 

https://doi.org/10.21123/bsj.2024.9792
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Furthering our literature review, recent contributions 

have shed light on novel methodologies and 

perspectives that complement our work. Specifically, 

advancements in imaging techniques have been 

explored23, potentially offering new insights into 

anonymization strategies. The evolving landscape of 

data engineering presents novel considerations for 

obfuscation-based privacy protections24. Innovations 

in Smart Cities have unveiled fresh approaches to 

policy-based privacy methods that are highly 

relevant to urban contexts25. The advent of smart 

technologies also introduces innovative techniques 

for location privacy26. Additionally, reviews such as 

those in the Baghdad Science Journal27 discuss new 

privacy-preserving strategies that are pertinent to our 

discussion. Lastly, ambient computing intelligence 

offers enhancements to policy-based methods28, 

enriching the discourse on privacy mechanisms. 

In summary, existing location privacy protection 

methods have respective disadvantages in failing to 

adapt to diverse user needs and context factors. Our 

work addresses the limitations of existing location 

privacy protection methods by proposing a context-

aware Privacy Protection Method that dynamically 

evaluates geographic semantics and mines user 

trajectories to estimate personalized privacy 

requirements. This method facilitates adaptive 

protection that is closely aligned with user needs and 

location contexts, offering a more personalized 

approach to privacy protection. However, we 

acknowledge that its application may be limited in 

scenarios with sparse or non-representative data. 

While recent studies by Chen et al.29 and Neisse et 

al.30 have begun to explore dynamic privacy 

requirements considering user context, they often do 

not utilize user trajectory data. Our approach builds 

on these insights by directly analyzing user trajectory 

data, thereby enhancing the personalization of 

privacy protection. To address these application 

limitations, we will further discuss in the 'Discussion' 

section the potential impact of data sparsity and 

representation on the deployment of our system and 

propose strategies to mitigate these challenges. 

Materials and Methods 

In this study, we­ suggest a context-aware location 

privacy prote­ction approach founded on examining 

users' past route­s. The strategy is planned to asse­ss 

users' varied privacy nece­ssities by thinking about 

both geographic qualities of are­as and private traits 

of users uncovere­d from past information. The 

approach includes the following pivotal parts: 

Context-aware Location Privacy Protection Model 

When considering the complexitie­s of location 

privacy within the world of mobile apps, we have­ 

created the "Conte­xt-Aware Location Privacy 

Protection Model (CLPPM)", as displaye­d in Fig. 1, 

an advanced framework that delicate­ly balances the 

specificity of privacy ne­eds against the risk of 

privacy violations in real-time­ situations.  

 
Figure 1. Context-aware Location Privacy Protection Model 

https://doi.org/10.21123/bsj.2024.9792
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Central to our approach is the­ separation into two 

distinct yet interre­lated parts: the "User Privacy 

Demand Calculation Module­" and the "Location 

Privacy leakage Module". 

Within the "User Privacy Demand Calculation 

Module," we determine the privacy demand degree 

(𝑆𝑎) by the following formulation: 

𝑆𝑎 = ϐ ∙ 𝐺𝑎 + 𝜗 ∙ 𝑇𝑎 + 𝜓 ∙ 𝐹𝑎 + 𝜐 ∙ 𝑅𝑎   1  

where: 

𝐺𝑎  represents the geographical attributes of the 

location, factoring in the inherent privacy sensitivity 

of different spaces. 

𝑇𝑎  , the Access Duration Factor, is the measure of 

how much time a user spends at a location. If a 

person’s stay is long, then it means that he or she has 

built strong relations with the place and probably 

shared more data in return for better services (which, 

at times, can be associated with higher privacy risk). 

𝐹𝑎, the Access Frequency Factor, is used to measure 

how often a user visits a particular location. The 

higher this value is, the more important that place 

becomes in someone’s daily routine, and therefore, 

the greater their privacy concerns will be. 

𝑅𝑎, the Access Regularity Factor, serves as a metric 

to assess the regularity of visits and infer potential 

privacy risks based on predictable patterns of user 

movement. 

To capture the impact of each factor on the overall 

privacy demand, weights ϐ, 𝜗, 𝜓, and 𝜐 are allocated 

accordingly. 

The "Location Privacy Leakage Module" 

concurrently assesses the level of privacy 

vulnerability at a specific location, indicated by the 

privacy leakage degree (𝐶𝑎), through the utilization 

of the formula: 

𝐶𝑎 = 𝛼 ∙ 𝑁𝑐 ∙ 𝐿𝑡 ∙ 𝑇𝑑   2 

In this formula: 

α is a normalization factor that adjusts the privacy 

leakage value to a standardized scale between [0, 1]. 

𝑁𝑐  indicates the count of real-time check-ins, 

reflecting the current activity level at the location. 

𝐿𝑡 is the Location Type Factor, which assigns a 

differential weight based on the type of location 

(private, semi-private, public), thus addressing the 

varying expectations of privacy inherent to each 

location type. 

𝑇𝑑 is the Time Decay Factor, which accounts for the 

diminishing relevance of older check-ins, 

emphasizing the significance of recent interactions in 

the assessment of current privacy risk. 

These components work in tandem, utilizing a 

comparator to weigh ( 𝑆𝑎 ) against ( 𝐶𝑎 ), thereby 

dictating the appropriateness of sharing location 

data. This decision-making process is integral to 

maintaining the user's privacy while providing 

service utility. 

Generally speaking, the more frequently and 

regularly people visit a location (e.g., 5 days a week, 

only on weekdays), the greater the impact on their 

lives and the more personal factors it carries, thereby 

increasing the user's privacy needs. To protect users' 

location privacy from the source to a greater extent, 

it is a more convenient and feasible strategy to let 

users choose to share their location in places where 

the current system leakage is lower than users' 

privacy needs. The privacy demand degree of the 

location to be shared is evaluated from two aspects: 

the geographical attributes of the location and the 

private attributes of the user from the location 

features mined from the user's historical trajectory. 

The uniform functional state that a location has for 

most users is called a geographic attribute. For 

example, a hospital has the same geographic property 

for most users, i.e., it is a location to see a doctor 

when sick. 

Currently, various smart devices have GPS sensors 

and through applications such as Baidu Maps, GPS 

positioning data, latitude, longitude, and altitude data 

can be easily obtained. Based on the positioning data 

or latitude and longitude data, the judgment of 

location may be lacking, such as positioning on a 

certain road, which may be a road in the 

entertainment and shopping area or a road in the 

school area. We can better judge the factors of a 

location's influence on users only if we clearly know 

the attributes of the location, i.e., the semantics of the 

location. For example, if a location is in a large 

https://doi.org/10.21123/bsj.2024.9792
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commercial area, then people may not have as high a 

demand for privacy in that location, and if the user's 

location is in a hospital area, people may be more 

sensitive to that location. So it is very necessary to 

get the attributes of the location. 

For the value of geographic attributes, this research 

is obtained based on a statistical analysis of the 

results of a large number of questionnaires. Let the 

range of geographic attributes be [0,1]. For example, 

banks are generally considered to be more sensitive 

in terms of location, so the geographic attribute value 

is 0.7, while parks are less sensitive to people, so the 

geographic attribute value is 0.1. 

By mining and analyzing users' historical track 

records, we can identify three obvious characteristics 

of the locations users visit: access duration, access 

frequency, and access regularity. Therefore, this 

section adopts these three features to measure the 

private attributes of a location to users. 

The following describes these three trajectory 

features that make up the private attributes. 

(1) Access duration factor (𝑇𝑎) 

Based on the trajectory movement records of users in 

the recent period, the average access time of users to 

each location is counted, and usually, the location 

with a longer average access time contains more 

personal privacy information. Define the visit time 

T𝑖,𝑗 from user 𝑖 to location 𝑠𝑗 , as shown in Eq. 3. 

𝑇𝑖,𝑗 =
∫ 𝑟(𝑡)𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
                   3  

r(t) = {
1       𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎          
0      𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎     

}     4  

In Eq. 3, t1 is the time when the track record starts, 

and t2 is the time when the track record ends. In Eq.   

4, r(t) indicates whether the user is in the region or 

not. 

(2) Access frequency factor (𝐹𝑎) 

The movement trajectory of user 𝑖 during the time of 

(t1, t2) is 𝑆𝑖 = (𝑠1, 𝑠2, … , 𝑠𝑗, 𝑠𝑛), 1 ≤ 𝑗 ≤ 𝑛, 𝑠𝑗 ∈ 𝑆𝑖,𝑠𝑗 

denotes a location visited by user 𝑖 during the time of 

(t1, t2). The access frequency is the ratio of the 

number of days a user visits a location to the total 

number of days the user travels. If a user visits a 

location more frequently, the location can be 

considered to be very important to the user (e.g., if 

the user travels 7 times a week and goes to the same 

place on average 5 times, then the location can be 

considered to be important to the user), and therefore 

it can be judged that the location may contain more 

private information about the user. 

Define the access frequency 𝐹𝑖,𝑗 of user 𝑖 to location 

𝑠𝑗, as shown in Eq. 5. 

𝐹(𝑖, 𝑠𝑗) =
𝐷(𝑠𝑗)

∑ 𝐷(𝑆)𝑠∈𝑆𝑖

   5  

where 𝐷(𝑠𝑗) is denoted as the number of days that 

the user 𝑖  visits a location 𝑠𝑗  and ∑ 𝐷(𝑆)𝑠∈𝑆𝑖
 is 

denoted as the total number of days that the user 𝑖 
travels. 

 3 Access regularity factor (𝑅𝑎) 

In order to accurately predict user privacy, the 

regularity of visits should also be considered. For 

example, homes and workplaces are usually visited 

by users for longer period and more frequently, and 

such visits are regularly, such as visiting the location 

at 8:00 a.m. every weekday. The regularity of access 

factor reflects whether a user's visit to a location is 

routine, thus eliminating errors in the user's privacy 

needs caused by temporary and sudden events. For 

example, if a user stays in a location for only a few 

days due to travel or business, he does not need a 

high degree of privacy protection for that location. 

Regularity of access also relates to whether it is 

regular on weekdays or regular on holidays. 

To calculate the regularity of a user's access to a 

location, the average access period of the user and 

the location is calculated first. The average access 

period 𝑅𝑖𝑗  is shown in Eq. 6. 

𝑅𝑖𝑗 =
∫ 𝑃𝑖,𝑗(𝑡)𝑑𝑡

𝑡2
𝑡1

𝑛𝑖,𝑗
                 6  

𝑃𝑖,𝑗(𝑡) = {
0            𝑈𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗   
1      𝑈𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 

}  7  

In Eq. 6, t1 denotes the start time of the intercepted 

mobile trajectory record of user 𝑖; t2 denotes the cut-

off time of the mobile trajectory of user 𝑖 ; 𝑛𝑖𝑗 

denotes the number of separations of user 𝑖  from 

https://doi.org/10.21123/bsj.2024.9792
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position j. In Eq. 7, 𝑃𝑖,𝑗(𝑡) indicates whether user 𝑖 is 

at position j. 

The strength of the relationship between user 𝑖 and 

position j is obtained by normalizing 𝑅𝑖𝑗  with a 

Gaussian similarity function, as shown in Eq. 8, 

where Ϸ denotes the scaling parameter of the access 

period. 

𝑆𝑖,𝑗 = 𝑒
(𝑅𝑖𝑗)

2

2Ϸ2                    8  

The irregularity metric 𝐼𝑖,𝑗  is used to determine 

whether the user's access to the location satisfies the 

regularity by calculating the variance of the access 

period, and the irregularity metric 𝐼𝑖,𝑗  is used to 

represent the regularity of the fluctuation of the 

access period, as shown in Eq. 9: 

𝐼𝑖,𝑗 =
∑ (𝐶𝑖,𝑗−𝑆𝑖,𝑗)

2
𝑖

𝑛𝑖,𝑗
              9  

where 𝐶𝑖,𝑗is denoted as the visit cycle length. 

Context-Aware Location Privacy Protection 

Method (CA-LP) 

The previous section introduced and evaluated the 

model of Location Privacy Protection System. 

Building on this foundation, this section proposes a 

multi-factor model based on multiple linear 

regression. It combines the aforementioned factors to 

form an evaluation function for user privacy needs. 

Furthermore, it introduces the use of number of 

registered individuals at the current location as a 

measure of location leakage. The steps of the 

location privacy protection method based on context 

awareness are then detailed. 

Privacy demand degree evaluation function 

The privacy demand degree evaluation function 

combines the inherent geographic attributes of the 

location with the private attributes relevant to the 

user. These factors are then weighted to determine 

the user's privacy demand for the location. The 

geographic attributes of the location are derived from 

GPS location, latitude, and longitude, and the private 

attributes of the location are the relevant factors 

mined from the user's historical trajectory records 

mentioned above, including the length 𝑇𝑖,𝑗 , 

frequency 𝐹𝑖,𝑗 and regularity 𝑅𝑖𝑗 of the user's access 

to each location. Central Mathematical Model for 

Privacy Demand Evaluation: Eq. 10 showcases the 

mathematical model that quantifies the user's privacy 

demand based on multiple factors. 

𝑠a = ϐ𝐹(𝑖, 𝑠𝑗) + 𝜗𝑇𝑖,𝑗 + 𝜓𝛼𝑖,𝑗 + 𝜐𝑆𝑖,𝑗 =

ϐ
𝐷(𝑠𝑗)

∑ 𝐷(𝑆)𝑠∈𝑆𝑖

+ 𝜗
∫ 𝑟(𝑡)𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
+ 𝜓𝛼𝑖,𝑗 + 𝜐𝑒

(𝑅𝑖𝑗)
2

2Ϸ2    10  

In Eq. 8, ϐ, ϑ, ψ, and υ represent the weights of the 

trajectory feature factors, ranging from [0,1]. The 

variable 𝛼𝑖,𝑗  denotes the geographical attributes of 

the location. Since the weights for each feature factor 

vary, the computed privacy demand degree will also 

differ. 

Location privacy leakage degree evaluation 

To quantify the privacy leakage degree of a location, 

we adopt the number of real-time check-ins at that 

location, denoted as Ca, as the metric. The number of 

check-ins directly reflects how many people have 

shared the location information, thus reasonably 

representing the degree of privacy leakage. 

To facilitate a comparison with the user's privacy 

need degree, denoted as Sa, we need to establish a 

mapping between them. In previous section, we 

calculated each location's user privacy demand 

degree Sa using Eq. 10. Corresponding to the Sa 

values, we have set different ranges for the K values 

as shown in Table 1. This approach provides a 

quantified judgment standard by converting the 

privacy need degree into an integer K value, allowing 

for a convenient comparison with the location's 

leakage degree, represented by the number of check-

ins. 

 

Table 1. Comparison table of users' privacy needs 

User Privacy Need 

Degree Sa 
0.1~0.2 0.3~0.4 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1 

User privacy needs K >=5 >=10 >=15 >=20 >=25 >=30 >=35 

https://doi.org/10.21123/bsj.2024.9792
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When determining the shareability of location 

information, we compare the user's privacy need, 

represented by the mapped K value, to the real-time 

number of check-ins at the location: If the mapped K 

value is greater than or equal to the number of check-

ins, it indicates that the location does not meet the 

user's privacy requirements. Conversely, if the 

number of check-ins is less than the K value, the 

information can be shared, as the leakage risk is 

within the user's acceptable privacy threshold. 

Steps of location privacy protection method 

Upon completing the calculations of user location 

sensitivity, we provide the comprehensive steps of 

the method and a corresponding flowchart (see Fig. 

2). The CA-LP method proceeds as follows. 

 
Figure 2. Flow chart of CA-LP method 

(1) After the user initiates a request to share their 

location, the geographical attributes are determined 

based on GPS positioning, latitude, and longitude 

information, in combination with the developer 

platform provided by Baidu Maps. 

(2) Obtain the user's movement trajectory for the 

recent period, and calculate the sensitive level values 

representing private attributes, such as user access 

time, access frequency, and access pattern, according 

to the corresponding formulas. 

(3) Calculate the user privacy demand degree Sa for 

each location using the inherent geographic 

attributes of the location and the private attributes 

specific to the user. 

(4) Calculate the privacy leakage degree Ca of this 

location in the current system. If Sa ≤  Ca, it 

indicates that the user is not sensitive in this location 

and can share the location; if Sa > Ca, it signifies that 

the user is more sensitive in this location, the current 

location does not meet the user's privacy and security 

requirements, and thus cannot be shared. The user 

may then choose other location points that fulfill 

their privacy needs for sharing. 

For users, everyone has different privacy needs for 

different locations, and the insensitive locations 

cover a wide range of locations and can meet the 

need of sharing locations. If a user wants to share a 

location, try to avoid locations that are sensitive and 

contain more of their private information, and choose 

some less sensitive locations to share, to better 

ensure their privacy and security. 

Experimental Settings 

The experimental data in this study were obtained 

from a real dataset of users' daily motion trajectories 

collected by the GeoLife project. The dataset 

comprises 18670 data records, featuring 182 users, 

with each record containing the current time, 

latitude, longitude, and altitude sensing data. The 

interval between each record is 5 seconds. Overall, 

this dataset contains 24870000 data points, making it 

a typical spatio-temporal dataset. 

To assess the performance of the CA-LP method 

proposed in this study, comparisons were made not 

only with the KV-LP31 method used in the previous 

study but also with two other similar methods: 

CAKM32 (Context-Aware Position K-Anonymous 

Privacy Preserving method) and Avg Static33 (Static 

Location Privacy Preserving Method) both of which 

are described in the literature and utilize fixed 

parameters. The CA-LP method was run on a 

https://doi.org/10.21123/bsj.2024.9792
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Windows 10 platform, using an Inter(R) Core (TM) 

i5 processor with 8 GB of memory, and the method's 

code is implemented in JAVA. 

The degree of privacy protection provided by the 

CA-LP method is related to the parameters in the 

user demand degree function. Experiments indicated 

that the method performs optimally when α is set to 

0.4, β to 0.2, ω to 0.2, and μ to 0.2. For the purpose 

of this study, it was assumed that each location had 

the same number of check-ins, implying that the 

privacy leakage degree was consistent across 

locations; however, the privacy demand degree 

varied from person to person and location to location. 

 

Results and Discussion 

In order to evaluate the effectiveness of the proposed 

CA-LP method, we conducted comparative 

experiments between CA-LP and three existing 

methods: CAKM, and Avg Static, and KV-LP. The 

evaluation metrics include: 

(1). Privacy protection level - As shown in Fig. 3, 

CA-LP demonstrates a higher level of privacy 

protection with increasing privacy requirement K 

values, indicating its superior ability to adapt to 

diverse user privacy needs. We define privacy 

protection level based on the notion of k-anonymity, 

ensuring that each user is indistinguishable among at 

least k-1 others, thus providing a quantifiable 

measure of privacy. 

 
Figure 3. Privacy protection level changes with K 

value 

(2) Quality of service - As shown in Fig. 4, the 

response time of CA-LP is slightly longer than KV-

LP and Avg Static, but it is comparable to CAKM. 

The marginal difference in response time does not 

noticeably affect the user experience. Quality of 

service is measured by the response time and 

accuracy of the location information provided, 

ensuring that our system delivers high-quality 

location-based services while upholding stringent 

privacy standards. 

 
Figure 4. Response time changes with K value 

(3) Privacy leakage risk - As shown in Fig. 5, CA-LP 

has a lower privacy leakage risk due to its contextual 

computation approach, which makes it more difficult 

for adversaries to infer user information. This risk is 

assessed by the probability of an adversary correctly 

inferring a user's location, with a lower score 

indicating stronger privacy. 

 
Figure 5. Privacy leakage risk changes with K 

value 

(4) Information loss - Although CA-LP introduces 

some information loss due to contextual protection, 

as indicated in Fig. 6, the amount of loss is acceptable 

when considering the privacy protection benefits that 
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CA-LP provides. Information loss is quantified as the 

deviation from the actual information caused by the 

privacy protection mechanism, and is kept within 

acceptable limits to maintain usability. 

 
Figure 6. Information loss volume changes with K 

value 

(5) Average anonymous time - As exhibited in Fig. 

7, the average time taken by CA-LP is highly 

comparable to the other three methods, suggesting 

that its efficiency is sufficient for practical usage. 

This metric reflects the time a user's location remains 

anonymous, with a higher value indicating better 

privacy preservation over time. 

 
Figure 7. Average anonymous time changes with 

K value 

In conclusion, the experimental results validate that 

CA-LP provides superior overall privacy protection 

performance and service quality when weighed 

against existing methods. Despite minor 

disadvantages in certain metrics, CA-LP 

demonstrates extensive practical value for location 

sharing applications that demand both privacy 

protection and quality of service. 

 

 

Conclusion 

Our work here reveals a location privacy protection 

method that is context-aware and based on different 

users' needs. The underlying principle is to assess the 

numerous privacy requirements of individuals 

through the extraction of environmental aspects such 

as visited time spans, frequency of visitations, and 

also the regularity as observed from their historical 

trajectories. However, we realize that some 

drawbacks exist in the technique proposed. 

In particular, our methodology’s reliability may be 

impaired under conditions with thin or non-standard 

information that could restrict the privacy 

requirement determination precision as well as the 

feasibility of our protective measures. In future 

investigations, we propose to resolve these obstacles 

through the introduction of new, sophisticated data 

analysis methods and accounting for even more 

contextual elements which can compensate for data 

scarcity. 

 A context-aware method is designed to estimate 

personalized privacy demand degrees. By comparing 

the estimated demand with real-time leakage degree, 

our approach contextually provides adaptive 

protection for each user and location context.  

Extensive experiments on real-world datasets 

demonstrate our method outperforms state-of-the-art 

methods, achieving better overall privacy protection 

with comparable service quality. The main 

contributions of this research are the trajectory 

mining-based context-aware approach and the 

contextual protection method. From this work, we 

can consider establishing in future studies a 

correlation between the user’s privacy demand level 

and the level of location privacy leakage, so that it 

would be possible to make a quantified assessment. 

This could offer a clear visual and impartial criterion 

for regulating your choice about sharing data on your 

whereabouts. While this is important, we need to 

recognize the value of user acceptance and the 
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pragmatism that comes from the use of our own 

method. Future versions of this technique will also 

include these dimensions so that the result is not just 

a good solution in theory but also one that is suitable 

to end-users' expectations on how usability can be 

maximized while privacy is protected as well. The 

next steps will include exploring the adaptation of 

our method for cloud-based infrastructures and the 

cloud-specific parameter mappings necessary to 

enhance the accuracy and effectiveness of privacy 

protection. In addition to these developments, we 

emphasize the importance of securing the method 

against potential security threats. We are conscious 

of the importance of protecting against DoS attacks 

and maintaining our system, which will not allow 

intruders to track the location through a DDoS attack. 

Some of the future improvements would include the 

incorporation of more advanced security measures 

coupled with extensive testing to assess our system’s 

resilience against these adversarial threats. We 

anticipate that the method will be capable of handling 

the current scale of data processing and user volume, 

and it will be flexible enough to scale up as the user 

base and data volume grow, ensuring that our privacy 

protection measures can adapt to future changes in 

technology and market demands. 
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 طريقة حماية خصوصية الموقع الواعية للسياق

  هوي وين نيس، روليانا إبراهيم، هاوهوا تشينغ

 .قسم الحوسبة التطبيقية والذكاء الاصطناعي، كلية الحوسبة، جامعة تكنولوجي ماليزيا، جوهور، ماليزيا

 

 ةالخلاص

الموقع موضوعاً يحظى بإهتمام متزايد مع شعبية الخدمات المبنية على المواقع. تقترح هذه الدراسة طريقة  لقد أصبحت حماية خصوصية

بتقييم احتياجات خصوصية الموقع لدى المستخدمين من خلال  CA-LP تقوم .(CA-LP) حماية خصوصية الموقع الواعية للسياق

وطرق أخرى من حيث مقاييس  CA-LP في المواقع. تقارن التجارب بين تحليل مساراتهم التاريخية وتقدير درجة تسرب الخصوصية

مثل مستوى حماية الخصوصية، جودة الخدمة، مخاطر تسرب الخصوصية، فقدان المعلومات، ومتوسط الوقت المجهول. تظهر النتائج 

مة عملية واسعة في تطبيقات قي CA-LP توفر حماية خصوصية وجودة خدمة أفضل عند النظر في جميع العوامل. تظهر CA-LP أن

 .مشاركة المواقع

لتحليل ا الخدمات المبنية على المواقع، حماية خصوصية الموقع،، حفظ الخصوصية الديناميكي الأمان الواعي للسياق، الكلمات المفتاحية:

 .الدلالي في بيانات المواقع
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