2024, 21(12 Suppl.): 4083-4091 Q*D
https://doi.org/10.21123/bsj.2024.9954 N

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 Baghdad Science Journal

New Subclasses of Bi-Univalent Functions Associated with

Exponential Functions and Fibonacci Numbers

Majd Ayash? , Hassan Baddour? , Mohammad Ali* , Abbas Kareem Wanas*?

!Department of Mathematics, College of Science, University of Tishreen, Latakia, Syria.
2Department of Mathematics, College of Science, University of AL-Qadisiyah, AL-Qadisiyah, Irag.
*Corresponding Author.

Received 14/10/2023, Revised 16/03/2024, Accepted 18/03/2024, Published Online First 20/06/2024,
Published 22/12/2024

—G)

@ By © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

Lewin discussed the class X of bi-univalent functions and obtained the bound for the second coefficient,
Sakar and Wanas defined two new subclasses of bi-univalent functions and obtained upper bounds for
the elementary coefficients |az| and |as| for functions in these subclasses, Dziok et al. introduced the class
SLM ,, of a-convex shell-like functions, and they indicated a useful connection between the function
p(z) and Fibonacci numbers. Recently, many bi-univalent function classes, based on well-known
operators like Sdldgean operator, Tremblay operator, Komatu integral operator, Convolution operator,
Al-Oboudi Differential operator and other, have been defined. The aims of this paper is to introduce
two new subclasses of bi-univalent functions using the subordination and the Komatu integral operator
which are involved the exponential functions and shell-like curves with Fibonacci numbers, also find
an estimate of the initial coefficients for these subclasses. The first subclass was defined using the
subordination of the shell-like curve functions related to Fibonacci numbers and the second subclass
was defined using the subordination of the exponential function. The Komatu integral operator was used
in each of these subclasses. Limits were obtained for the elementary coefficients, specifically the second
and third coefficients for these subclasses.

Keywords: Bi-univalent functions, Coefficient bounds, Exponential function, Fibonacci numbers,
Komatu integral operator, Subordination.

Introduction

Let C be the complex plane and U={z:z €
C and |z| < 1} be the open unit disc in C. Further,
let A be the class of functions analytic in U, thus
satisfying the condition

fO)=f(0)-1=0.

In addition, each of the functions f in A has the
following Taylor series expansion

f@)=z+az2+azz3 +-=z+ Yo ,a,z".
1

Suppose S is a subclass of A consisting of univalent
functions in U.

By the Koebe One-Quarter Theorem %, it is known
that the range of every function in § contains the disk
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{w:|w| <1/4}. Therefore, every univalent

function f has an inverse f~1, so that:

fF@)=z(zeWand f(f1w) =w (Iw| <
10(f)1o(f) 2 1/4)

gw)=ftw) =w+
b,w? + byw3 + -

=w —a,w? + (2a5 —
az;)w3 — (5a3 — 5a,a; + al))w? + -
2

A function f € A is said to be bi-univalent in U if
both f and its inverse g = 1 are univalent in U.
Let X be the class of all bi-univalent functions.
Examples of functions in the class X are

z
1—2z

1+Z>

1
, —log(1—-2) , Elog<1_z .

Let us denote by B the class of bounded or Schwarz
functions w(z) which are analytic in the open unit
disc U and satisfying:

w(z) = z cpz™ w(0) =0,|lw(2)| < 1.
n=1

Definition 1: ' Consider two functions f and g
analytic in U, it is said that f is subordinate to g
(symbolicallyf < g) if there exists a bounded
function w(z) € B for which f(z) = g(w(z2)). This
definition is known as the principle of subordination.

Lemma 1: * For two analytic functions u(z), b(w),
where (u(0) = b(0) =0, |u(2)| < 1,|b(w)| < 1)
suppose that:

[ee)

u(z) = x,2" (z € U),
b(w) = yow™ (w € U).
Then:

e | < 1,161 <1 =[x |% |yl < 1, [ysl
<1-|yl?

Lewin in? discussed the class X of bi-univalent
functions and obtained the bound for the second
coefficient, Sakar and Wanas in® defined two new

subclasses of bi-univalent functions and obtained
upper bounds for the elementary coefficients |a;| and
|as| for functions in these subclasses. The issue of
estimating the first and second coefficients in
subclasses of bi-univalent functions is still the focus
of attention of many researchers in this field, as
shown in *®. It is known that the exponential function
has an expansion in the Taylor series as follows

[ee]
z
e ol —
n!

n=0

n

Shi et al. in” obtained Hankel determinant of third
order bounds for univalent functions subclasses
S, and C, which are associated with exponential
functions. The subclasses S; and C, are defined as
follows:

* __ _Zf’(Z) z
si={fes: To<e z € U}

(zr' @)
fr(2)

Ce={f€S: <ez,zE[U}

In®, Zaprawa improved the result in’ for the bounds
of Hankel determinant of third order in the subclass
S; . Besides that, Zaprawa® obtained the bounds of
Hankel determinant of the third order in the subclass
K, of univalent functions associated with
exponential functions that are defined as follows:

_ ) zf1'(2) z
K ={fes: 1+ <e ,z € U}
In® Dziok et al. introduced the class SLM , of a-
convex shell-like functions, and they indicate a
useful connection between the function p(z) and
Fibonacci numbers.

Lemma 2: ° Let {u,} be the sequence of Fibonacci
numbers:

{ uo = 0,u1 =1
Unyz = Upp1 T Uy 5 (N ENG)

then

(1-7)" =" 1-+5
Up=—""m—F7——" , T=

V5

If one can set:
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) =1+ ) por”
n=1

=14 (uy +uy)tz
+ (uy + u3)7r?2?
(o]

+ Z (Up—3 + Up_p + Up_4
n=3
+ u,)t"z"

Then the coefficients p,, satisfy:

T n=1
(n=2)
(n=3,4..).

Pn = 372
TPn—1 + TPp—2
The function p(z) is not univalent in U, but it is

univalent in the disc 3’_2—‘5%0.38, For

|z| <

1 1

example, 5(0) = (;—T) =1andp (eii“rcc"s(4)) =
V5
=
The expression 72 =7+ 1 can be used to obtain
higher powers t™ as a liner function of lower powers,

recurrence relationships yield Fibonacci numbers u,,

Uy = 0,u1 =1

n
T =UpT+ Up—q ;{ _
Untz = Unt1 T Up

(see 1° for details).

Definition 2: *° The Komatu integral operator of f €
A is denoted by " f (z) and defined by:

n
K f(@) =z+35, (o) anz™; (£>0,72

t+n-1

0,z€U)

-1

T etz (150 L)
rado € (logf)

Recently, many bi-univalent function classes, based
on well-known operators like the Salagean operator,
Tremblay operator, Komatu integral operator as in'®
12 Convolution operator, Al-Oboudi Differential

f(z§)dg.

Results and Discussion

First, the bounds of the coefficients |a,|, |as] is

obtained for functions in My ().

operator and other as in***°, have been defined. To
define our new classes, where the Komatu operator
is used which is defined as follows:

Definition 3: A function f € X is said to be in the
class:

MPEH A>p=0,t>0,7>0,zweU)

If the following subordination relationships are
satisfied:

xgw)
a1

L) g =

g’ w) 1-tw-12w?’

where the function g(w) is givenby 2 and t =

1_2_@ ~ —0.618.

Definition 4: A function f € X is said to be in the
class:

Hy(€) (12 p=0,t>0,n20,zweU)

If the following subordination relationships are
satisfied:

1+ % [(%Z’f(z))’ + pz (.‘Kt"f(z)) - 1] <e? 5
and

1+ % [(%Z’g(w))’ + pw (K:g(w))” — 1] <eY,
6

where the function g(w) isgivenby 2 andt =

15 . _0.618.

Theorem 1: If f € My (), then
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lay| <

- Il Izl(1+3[z])
a-»(1-5)") Ja-o(H)"-()")

And

Il ((1 — ()" ) el + (20 + @ = )1+ 312D) (1 - (H%)")j
|as| < min (1—p)2( _(t-:Z))( ( )) ' .
|T|(1+3|T|)‘/1—_"(1_2(HL2)" +(t+1) )+2p (1 ( i [|T|(1+ 3|T|)((t+ 1)n (HLZ)H)]E
-0 (1~ (52) ) (1) - (52))

Proof: Asf € M" t(p) so by Definition 3 and using

the principle of subordmatlon in Definition 1, there
exist Schwarz functions u(z) and b(w), one can
write 3and 4 as following

K@ 25 @)\
A=P=0 +p<1+ @ )T
p(u(2)) 7

and

p (1 + M) = 5(bw)),

! g(w)
1—p)t2 ™
1-p) + 7o

gw)
8

where u(z) = x,z + x,z% + -+ and b(w) =

yw + y,w? + - (z,w € U).

Using 1 and Definition 2 in 7 on expanding, it
yields

n %h
(1-p) xt f(z) +p <1 + —Z( ;,{Z()Z))’> =1+

SRSITAR A
a-p(1- G5t + -

()~ 1)es 20 () 1) ]+ -
9

Using 2 and Definition 2 in 8 on expanding, it

yields
z(?(t"g(w))l _
+p<1+ 7o >—1+

1) b, | w

_ \Klgw)
A-"=w

p+a-n () -

+la-p(1- (L)n) b3+ (1—
) ((t+2)7l )b3 +2p ((t+1)n - 1) bz] W2 4

Since b, = —a, , b3 = 2a3 — as, one can get

=1+[p+(1—p)<1—(HL1)n>a2]w

- (5 - () - )t -

P (1- (i)n) a;+2p(1- (i)n) ar|w? + -

10
Again
P(u(2)) = 1+ p1x:12 + (Brxp + Pox{)z% + - 11
and
pb(W)) = 1+ iy w + (Bry, + PyPw? + 12
Using (9) and (11) in (7) and equating the

coefficients of z and z2, lead to

)

and

0= (- () - () -

1) az +2p ((H%)n - 1) ay = Prxy + Poxi.
14

- 1) a, = ﬁlxl 13

Using 10 and 12 in 8 and equating the
coefficients of w and w?, lead to

p+(1-p) (1 - (_)77) a; = p1y1 15

t+1
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and

a-p(2(5) - (H) -Yara-

P (1= (55) )@+ 20 (1- () ) =
Pry2 + D2y1. 16
Subtracting 15 from 13, it yields

P1(x1—y1)

201- p)<(t+1)’7_1)'

Applying triangle inequality, one can get

a, =

1D 1Clxq | + 1y1D)
20-p) (1~ (7))

Applying Lemma 1 and Lemma 2, one can obtain

lay| <

|zl
(-]

Adding 14 and 16, it yields

lay| < 17

» Pz +y7) + 7, (xf + y7)

az = ] t NV
2(1 - p)((t+2) _(t+1) )
Applying Lemma 1 and triangle inequality and

taking the root of both sides, one can find

712 — %1 [* — |y1[?) + 672

200 () - ()

Again applying Lemma 1 and Lemma 2, one can
obtain

laz| <

lzl@+3i7)

el = j< ESEESY)

18
From 17 and 18, the first part of our theorem is
fulfilled.

Subtracting 16 from 14, it is seen that

afi-(f)a
(R

+40 () - 1)

=p(x; —y2) + ﬁz(xlz - Y12)'

Therefore,
2(1—p)((L)n—1>a2+4p<1—(£)n)
2(1- 'D)((t+2) _1)

P1(x2— J’2)+I52(x%_Y12)

2(1- p)((t+2) _1) ’

Applying triangle inequality and Lemma 1 and
Lemma 2, one can obtain

20(1-(e57)")

a3= a2+

las| < |a3 |+—|a | +
’ ’ (- )( _(t+2) ) :
|P1|(|x2|+|J’2|)+|p2|(|x1|+|3’1D
20-p)(1-(:5)")
1-(2)"
las| < |a |+M la,| +
(1- )( (t+2) )
[z|(1+3]z])
_— 19
a-n(1-(5)")
From 17 and 19, one can get
2
las| < Il 2plt| +
T aer(()) ame(-())
[z|(1+3]z])
a-n(1-()")
las| < || N ITl(2p+(1-p)(1+3|7])
3l =

(1_p)2(1—(%)n)2 (1_,))2(1_(”%)") '

las| <
|T|<( (“'2) )|T|+(2p+(1 P)(1+3|T|))( (t+1)n)2>
T

Also from 18 and 19, one can get
lzI(1+3]])

R (3 R
20(1-(5)") rlatae)
a-p(1-(5)") Ja-o(H)"-())

[zI(1+3]7])

a-0(1-(z)")
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las]

_ I+ 3Dy T (1 - (=5)") + 2o(1elct + 31e0)2 (1 -

+ 10+ 3T () - (2))

1-p2(1-

las|

el + 3lehyT=p (1 -
<

2() + (e 1)) 2 (1- (=) )[Irl<1+3lfl>((t+1)"—(H%)")];.

(1—p)2< (

21

From 20 and 21, the second part of our theorem is
fulfilled.

Theorem 2: If f € 7—[27’,’;(5'2), then

7|
2(1+p)(%)n

7|

20420)(5)’

la,| < min

and
|a3| <

Izl

min ,
{mm(ﬁ%)"

Proof: Asf € 7—[" t(ez) then by Definition 4 and by
using the prinC|pIe of subordination in Definition 1,
there exist Schwarz functions u(z) and b(w) such
that

|‘r|(|‘r|(1+2p)(t+2) +2(14p)? (m)zn)}

4(1+2p)(1+p)2(t+2)ﬂ (H—Ll)zn

u(z) = Yoe1xp2™, bw) = Yo yw" ,(z €
U,w € U), thus one can write 5 and 6 as follows:

142 [(:ic;?f(z))' + pz (?Ct"f(z))” —1] = e4®
22

and

1 +%[(?C;7g(w)), + pw (ﬂCZ’g(w))” — 1] =
ebM), 23

On expanding, it yields

) )

1) -(+2))

142 [(?Ct"f(z))’ +pz (S}C"f(z))” - 1] =1+

%(1 +p) (i)n a,z += (1 + 2p) (t 2)77 asz? +
e 24

and

+ % |(5679@)) +pz (7 gw)) " -1
n
Bl 1+i(1+p)(t-|t-1)

t
Z - 24 ...
+T(1+2p)(t+2> bsw? +

Since b, = —a, , b3 = 2a3 — a3, one can get
+ [(xgg(W))’ +pz (%?g(W))” —1]=1-

20+p)(5) aw

+= (1+2p)( ) (2a3 — az)w? + -

25

Again

e¥?) = 1+x12+(x2 +9€2_%)Zz+m 26
and

'@ =1+y,w+ (yz + yz—%) w2+ -

27

Using 24 and 26 in 22
coefficients of z and z?2, lead to

and equating the

() e = 2

and
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3 t \" x2
~(1+2p) (t+_2) az =Xz + 5
29

Again using 25 and 27 in 23 and equating the
coefficients of w and w?, lead to

——(1 +p) (Hl)n a; =Y,
30

and

‘(1+2P)( )(2‘12_‘13)—3’2 y1

31

t+2

Adding 28 and 30, it yields
Vi=—X
Thus
lyil = lxq|. 32
Subtracting 30 from 28, it is seen that

‘( +p) (Hl)n Az =X — Y1

_ T(x1—-Y1)
i)

Applying triangle inequality and 32, one can get

|Tx4|
2(1+ p)(t+1)m

Applying Lemma 1, one can get

lay| <

|z|
lay| £ ———=. 33
’ 2(1+ )(t+1)n

Adding 29 and 31, it yields

n
20+20) () =+, +50E +yD),

Applying triangle inequality and Lemma 1, it is
seen that

L1 +2p) ()" la3] < 2= Il — Iyl +

5(|x12| +|yE]),

Again applying Lemma 1 leads to

=1 +2p) (75 ) |a3| <33,

Therefore

17l
lagl < |——. 34
2T raren ()’

From 33 and 34, the first part of our theorem is
fulfilled.

Subtracting 31 from 29, it is seen that
T 6 t\7 5
—(1 + 2p) (t 2) a; = ;(1 + 2p) (E) as +
— V2 +§(x1 -y,

Applying triangle inequality, lead to
La+20) () lasl s+

20) (555)" la3] + ezl + 1yl + 5 (| + 52,
Applying Lemma 1, it is seen that

La+20)(5) lasl s S+

p)( )Iaz|+2—|x12| AR CHE
|3’1
50 +20) (535) sl

2p) (t+2) |a2| +3,

Il
— 35
2(1+2p)(t+2)n

_ﬁ(1+

|a3| < |a%| +

From 34 and 35, one can find

|l
lag] < ———. 36
S ()

From 33 and 35, one can find

|zI? Izl

4(1+p)2(t+1)2n 2(1+2p)(t+2)

|a3| < m

|r|(|r|(1+2p)(t+2) +2(1+p)? (m)zn)

4(1+2p)(1+p)? (t+2)n($)2n

lag| <

From 36 and 37, the second part of our theorem is
fulfilled.
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Conclusion

In this research, two subclasses of bi-univalent
functions were defined. The first subclass mentioned
in Definition 3 was defined using the subordination
of the shell-like curve functions related to Fibonacci
numbers and the second subclass mentioned in
Definition 4 was defined using the subordination of
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