نموذج التقييم المبني على تعليقات فيسبوك لشركات المنتجات الغذائية باستخدام أربع طرق للتعلم الآلي مع المعجم العربي/العراقي
DOI:
https://doi.org/10.21123/bsj.2024.10099الكلمات المفتاحية:
نموذج تقييم، اللهجة العراقية، تعليقات الفيس بوك، انتاج الغذاء، تعلم الماكنة.الملخص
تزداد حاجة الناس الى الغذاء يوماً بعد يوم بسبب الزيادة السكانية الكبيرة التي حصلت للمجتمع البشري، مما أدى الى زيادة كبيرة في نشاط شركات صناعة المنتجات الغذائية في العالم. من هنا تبرز الحاجة الضرورية الى تقييم اداء شركات انتاج الغذاء. وجدنا ان افضل طريقة لتقييم اداء هذه الشركات هو عن طريق تعليقات وسائل التواصل الاجتماعي، لانها الطريقة الاحدث والاكثر شيوعاً بين الناس. في هذا البحث تم الاعتماد على تقنيات تعلم الماكنة في تقييم تعليقات المشاركين في تقييم شركات انتاج الغذاء بعد ان تم الاستعانة بمعجم مصطلحات اللغة العربية عموماً واللهجة العراقية خصوصاً، وهذه المصطلحات تخص الكلمات والتعابير الايجابية والسلبية. ومن ثم التدريب من خلال خوارزميات تعلم الماكنة. تم اختبار خوارزمية الغابة العشوائية (RF)، و Naive Bayes (NB)، و Rough Set Theory (RST)، و Support Vector Machine (SVM). أثبتت التجارب أن طريقة RST تفوقت على الثلاثة الآخرين. حيث أن طريقة (RST) حققت نسبة دقة (96.13%)، وحققت طريقة (SVM) نسبة دقة (95.75%)، حققت طريقة (RF) نسبة دقة (%94.1) وحققت طريقة (NB) نسبة دقة (87.1%).
Received 02/11/2023
Revised 12/07/2024
Accepted 14/07/2024
Published Online First 20/11/2024
المراجع
AL-Mashhsdany AK, Ahmed SA.Textual analysis applications: subject review. J Univ Anbar Pure Sci. 2022; 12(3): 71-83. https://doi.org/ 10.37652/juaps.2022.171861.
AL-Mashhadany AK, N Hamood D, Sadiq Al-Obaidi AT, K Al-Mashhsdany W. Extracting numerical data from unstructured Arabic texts (ENAT). Indones J Electr Eng Comput Sci . 2021; 21(3): 1759-70. https://doi.org/ 10.11591/ijeecs.v21.i3.pp1759-1770.
AL-Bakri NF, Yonan JananF, Sadiq AT. Tourism companies assessment via social media using sentiment analysis. Baghdad Sci J. 2022; 19(2): 422-429. https://doi.org/10.21123/bsj.2022.19.2.0422.
Thorat M, Guide N F. Review Paper on Sentiment Analysis for Hindi Language. Int J Eng Sci Technol. 2022; 8(1): 51367–51396. https://doi.org/10.1007/s11042-023-17537-6 .
Ahmed HM, Javed Awan M, Khan NS, Yasin A, Faisal Shehzad HM. Sentiment analysis of online food reviews using big data analytics. Reviews using Big Data Analytics. Elementary Education Online (EEO). 2021; 20(2): 827-836.
Al-Mashhadany AK, Sadiq AT, Ali SM, Ahmed A. Healthcare assessment for beauty centers using hybrid sentiment analysis. Indones J Electr Eng Comput Sci. 2022; 28(2): 890-897. https://doi.org/10.11591/ijeecs.v28.i2.pp890-897
Gohil S, Vuik S, Darzi A. Sentiment analysis of health care tweets: review of the methods used. JMIR Public Health Surveill. 2018; 4(2): e43 https://doi.org/10.2196/publichealth.5789.
Sajid A, Awais M, Amir Mehmood MA, Batool S, Shahzad A, Zafar A. Patient’s feedback platform for quality of services via ”free text analysis” in healthcare industry. Emitter Int J Eng Technol. 2020; 8(2): 316-25. https://doi.org/10.24003/emitter.v8i2.502.
Reyes CN, Arcega VG, Flores JM, Manez CJ, Sinday FJ, Tan JK, et al. An Analysis of the Satisfaction of Healthcare Workers on the Hazard Compensation in both private and public healthcare institutions during the COVID-19 pandemic in Metro Manila. Int J Appl Sci Eng. 2021; 1(2): 1-22.
Tian S, Yang W, Le Grange JML, Wang P, Huang W, Ye Z. Smart healthcare: making medical care more intelligent. Glob Heal J. 2019; 3(3): 62-5. https://doi.org/10.1016/j.glohj.2019.07.001.
Huchegowda R. Review on artificial intelligence and applications in healthcare. NEURO Open. 2019; 6(1): 1-4. https://doi.org/10.17140/NOJ-6-e010.
Mustafa J. Hadi, Ayad R. Abbas, Osamah Y. Fadhil. A Novel Gravity Optimization Algorithm for Extractive Arabic Text Summarization. Baghdad Sci J. 2024; 21(2): 537-547. http://dx.doi.org/10.21123/bsj.2023.7731.
Ramírez-Tinoco FJ, Alor-Hernández G, Sánchez-Cervantes JL, Salas-Zárate MDP, Valencia-García R. Use of sentiment analysis techniques in healthcare domain. Current Trends in Semantic Web Technologies: Theory and Practice. 2019; 189-212, https://doi.org/10.1007/978-3-030-06149-4_8.
Garouani, M, Kharroubi J. Towards a new lexicon-based features vector for sentiment analysis: application to Moroccan Arabic tweets. Advances in Information, Communication and Cybersecurity: Proceedings of ICI2C’21. 2022: 67-76, https://doi.org/10.1007/978-3-030-91738-8_7.
Aloqaily A, Al-Hassan M, Salah K, Elshqeirat B. Almashagbah, M., Al Hussein Bin Abdullah P. Sentiment analysis for arabic tweets datasets: Lexicon-based and machine learning approaches. J Theor Appl Inf Technol. 2020; 98(4): 612-623.
Duwairi RM, Ahmed NA, Al-Rifai SY. Detecting sentiment embedded in Arabic social media-a lexicon-based approach. J Intell Fuzzy Syst. 2015; 29(1): 107-17. https://doi.org/10.3233/IFS-151574.
Mustafa HH, Mohamed A, Elzanfaly DS. An enhanced approach for Arabic sentiment analysis. Int J Artif Intell Appl. 2017; 8(5): 1-14. https://doi.org/10.5121/ijaia.2017.8501.
Machová K, Mikula M, Gao X, Mach M. Lexicon-based sentiment analysis using the particle swarm optimization. Electronics. 2020; 9(8): 1317. https://doi.org/10.3390/electronics9081317 .
Taj S, Shaikh BB, Fatemah Meghji AF. Sentiment analysis of news articles: A lexicon based approach. international conference on computing, mathematics and engineering technologies (iCoMET). 2019; p. 1-5. https://doi.org/10.1109/ICOMET.2019.8673428.
Ismail R, Omer M, Tabir M, Mahadi N, Amin I. Sentiment analysis for Arabic dialect using supervised learning. J Electr Electron Eng (ICCCEEE). International Conference on Computer, Control; 2018. p. 1-6. https://doi.org/doi: 10.1109/ICCCEEE.2018.8515862.
Hawalah A. A framework for Arabic sentiment analysis using machine learning classifiers. J Theor Appl Inf Techno. 2019.
Abo MEM, Idris N, Mahmud R, Qazi A, Hashem IAT, Maitama JZ et al. A multi-criteria approach for Arabic dialect sentiment analysis for online reviews: exploiting optimal machine learning algorithm selection. Sustainability. 2021; 13(18): 10018. https://doi.org/10.3390/su131810018.
Rasheed SS, Sadiq AT. Assessment of service departments in the governorates through social media comments. Iraqi J. Com. Comm. Cont. Sys. Eng. (IJCCCE). 2021; 21(2): 132-42. https://doi.org/https://doi.org/10.33103/uot.ijccce.21.2.10 .
Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L. Use of sentiment analysis for capturing patient experience from free-text comments posted online. J Med Internet Res. 2013; 15(11): e239. https://doi.org/10.2196/jmir.2721.
Abualigah L, Alfar HE, Shehab M, Hussein AMA. Sentiment Analysis in Healthcare: A Brief Review. In: Recent Advances in NLP: The Case of Arabic Language. Studies in Computational Intelligence, Springer.. 2020; 874: 129–141. https://doi.org/10.1007/978-3-030-34614-0_7
Yadav S, Ekbal A, Saha S, Bhattacharyya P. Medical sentiment analysis using social media: towards building a patient assisted system. In: Proceedings of the eleventh international conference on language resources and evaluation; 2018. p. 2790-7
M. Al-Ayyoub, A.A. Khamaiseh, Y. Jararweh, M.N. Al-Kabi, A comprehensive survey of Arabic sentiment analysis. Inf. Process. Manag. 2019; 56(2): 320–342. https://doi.org/10.1016/j.ipm.2018.07.006
Almagrabi, A. O., Ahmad, S. Sentiment analysis system for classification of patient-generated health reviews using rough set theory and machine learning technique. J Med Imaging Health Info. 2020; 10(10): 2361-2368. https://doi.org/10.1166/jmihi.2020.3188
Chan CC, Liszka KJ. Application of rough set theory to sentiment analysis of microblog data. Rough Sets and Intelligent Systems-Professor Zdzisaw Pawlak in Memoriam: 2013; 2: 185-202, https://doi.org/10.1007/978-3-642-30341-8_10.
Azzi S, Gagnon S, Ramirez A, Richards G. Healthcare applications of artificial intelligence and analytics: a review and proposed framework. Appl Sci. 2020; 10(18): 6553-6573 https://doi.org/ 10.3390/app10186553.
Araque O, Zhu G, Iglesias CA. A semantic similarity-based perspective of affect lexicons for sentiment analysis. Knowl Based Syst. 2019; 165: 346-59. https://doi.org/10.1016/j.knosys.2018.12.005.
Krishna Kishore P, Prathima K, Eswari DS, Goud KS. Bidirectional LSTM-Based Sentiment Analysis of Context-Sensitive Lexicon for Imbalanced Text. Intelligent System Design: Proceedings of INDIA 2022. p. 283-297. https://doi.org/10.1007/978-981-19-4863-3_27
Khoo CS, Johnkhan SB. Lexicon-based sentiment analysis: comparative evaluation of six sentiment lexicons. J Inf Sci. 2018; 4(4): 491-511. https://doi.org/10.1177/0165551517703514.
Gavin, M. Is there a text in my data? (Part 1): On counting words. Journal of Cultural Analytics (JCA). 2020; 5(1): 1-24. https://doi.org/10.22148/001c.11830 .
Turney PD, Littman ML. Measuring praise and criticism: inference of semantic orientation from association. ACM Trans Inf Syst. 2003; 21(4): 315-46. https://doi.org/10.1145/944012.944013.
ElSahar H, El-Beltagy SR. Building large Arabic multi-domain resources for sentiment analysis. International conference on intelligent text processing and computational linguistics. 2015; 23-34, https://doi.org/10.1007/978-3-319-18117-2_2.
Ali AT, Ahmed TS. Lexicon-based sentiment analysis for Iraqi vernacular/Arabic language using KNN, naive Bayes and rough set theory. JARDCS. 2020; 11(11): 50-55. https://doi.org/f10.5373/JARDCS/V12SP8/20202501.
Kang H, Yoo SJ, Han D. Senti-lexicon and improved Naive Bayes algorithms for sentiment analysis of restaurant reviews. Expert Syst Appl. 2012; 39(5): 6000-10. https://doi.org/10.1016/j.eswa.2011.11.107.
Dinh CWB H, Cooper M. Naive Bayes and unsupervised artificial neural nets for Cancún tourism social media data analysis. 2010. second world congress on nature and biologically inspired computing (NaBIC). Beppu, Japan, New York: IEEE Publications. p. 158-63, https://doi.org/10.1109/NABIC.2010.5716370.
Khanday AMUD, Khan QR, Rabani ST. Detecting textual propaganda using machine learning techniques. Baghdad Sci J. 2021; 18(1): 0199-page??. https://doi.org/10.21123/bsj.2021.18.1.0199.
Gregorutti B, Michel B, Saint-Pierre P. Correlation and variable importance in random forests. Statistics and Computing. Springer. 2017; 27: 659-678, https://doi.org/10.1007/s11222-016-9646-1.
Loh WY, Vanichsetakul N. Tree-structured classification via generalized discriminant analysis. J Am Stat Assoc. 1988; 83(403): 715-25. https://doi.org/10.1080/01621459.1988.10478652.
Indurkhya N, Damerau F J. (Eds.). Handbook of natural language processing. 2010; 2(1): 627-66.
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Raad Sadi Aziz, Sura Mazin Ali, Ahmed T. Sadiq

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.