تحليل الاستقرارية لنموذج الانبعاث المفرط لثاني أكسيد الكربون من خلال اتباع سياسة إعادة التشجير في الغابات منخفضة الكثافة
DOI:
https://doi.org/10.21123/bsj.2024.11370الكلمات المفتاحية:
تحليل التشعب، نموذج غاز ثاني اوكسيد الكاربون، تحليل عددي، اعادة التشجير، تحليل الاستقراريةالملخص
بعتبر غاز ثاني أوكسيد الكاربون مسبب رئيسي لظاهرة الاحتباس الحراري. تعتبر الكتلة الحيوية للغابات ضرورية لاحتجاز ثاني أوكسيد الكاربون في الغلاف الجوي؛ ومع ذلك، فإن معدل الانخفاض في الكتلة الحيوية للغابات في جميع أنحاء العالم مثير للقلق ويمكن أن يعزى إلى الأنشطة البشرية. تعد إعادة التشجير أمرًا ضروريًا في هذه الحالة لتقليل كمية ثاني أوكسيد الكاربون في الغلاف الجوي. يمكن تقييم جهود إعادة التشجير وفقًا للاستثمار المالي المطلوب لتنفيذها. يقدم هذا العمل نموذجًا رياضيًا غير خطي يدرس تأثير إعادة التشجير وتنفيذ مبادرات إعادة التشجير على تنظيم مستويات غاز ثاني أوكسيد الكاربون في الغلاف الجوي. تم العثور على القيم الحرجة للنموذج وتم تحليل استقرارها . تم إجراء تحليل التشعب حول القيم الحرجة المحتملة. واستنادا إلى تحليل النموذج، فإن غياب إعادة التشجير من شأنه أن يعرض بعض الجوانب لخطر الانقراض. في حين ساهم برنامج اعادة التشجير في انخفاض مستوى ثاني أوكسيد الكاربون في الغلاف الجوي. علاوة على ذلك، يشير التحليل الرقمي إلى أن النظام يعاني من فقدان الاستقرار دون أنشطة إعادة التشجير.في حين يحافظ النظام على التذبذب من خلال تشعب هوبف أثناء الانخراط في أنشطة إعادة التشجير.
Received 15/04/2024
Revised 06/07/2024
Accepted 08/07/2024
Published Online First 20/11/2024
المراجع
Brown S. Tropical forests and the global carbon cycle: the need for sustainable land-use patterns. Agric Ecosyst Environ. 1993; 46(1–4): 31–44. https://doi.org/10.1016/0167-8809(93)90011-D
Thirthar AA, Sk N, Mondal B, Alqudah MA, Abdeljawad T. Correction: Utilizing memory effects to enhance resilience in disease-driven prey-predator systems under the influence of global warming. J Appl Math Comput. 2023; 69: 4909–4910. https://doi.org/10.1007/s12190-023-01963-8
Thirthar AA, Panja P, Khan A, Alqudah MA. An Ecosystem Model with Memory Effect Considering Global Warming Phenomena and Exponential Fear Function. Fractals. 2023; 31(10): 1–19. https://doi/10.1142/S0218348X2340162X
Makarov I, Chen H, Paltsev S. Impacts of climate change policies worldwide on the Russian economy. Clim Policy. 2020 Nov 25; 20(10): 1242-56. https://doi.org/10.1080/14693062.2020.1781047
Dubey B, Sharma S, Sinha P, Shukla JB. Modelling the depletion of forestry resources by population and population pressure augmented industrialization. Appl Math Model. 2009; 33(7): 3002–3014. https://doi.org/10.1016/j.apm.2008.10.028
Panja P. Is the forest biomass a key regulator of global warming?: A mathematical modelling study. Geol Ecol Landsc. 2022 Jan 2; 6(1): 66-74. https://doi.org/10.1080/24749508.2020.1752021.
Panja P. Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study. Int J Model Simul. 2021 May 4; 41(3): 209-219. https://doi.org/10.1080/02286203.2019.1707501.
Caetano MAL, Gherardi DFM, Yoneyama T. An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon. Ecol Model. 2011; 222(15): 2835–2840. https://doi.org/10.1016/j.ecolmodel.2011.05.003
Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, et al. EDGAR v4. 3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst Sci Data. 2019 Jul 8; 11(3):959-1002. https://doi.org/10.5194/essd-11-959-2019
Morales-Hidalgo D, Oswalt SN, Somanathan E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For Ecol Manag. 2015; 352: 68–77. https://doi.org/10.1016/j.foreco.2015.06.011
Van Wees D, van Der Werf GR, Randerson JT, Andela N, Chen Y, Morton DC. The role of fire in global forest loss dynamics. Glob Change Biol. 2021 Jun; 27(11): 2377-2391. https://doi.org/10.1111/gcb.15591
Shukla JB, Dubey B. Modelling the depletion and conservation of forestry resources: effects of population and pollution. J Math Biol. 1997; 36(1): 71–94. https://doi.org/10.1007/s002850050091
Tennakone K. Stability of the biomass-carbon dioxide equilibrium in the atmosphere: mathematical model. Appl Math Comput. 1990; 35(2): 125–130. https://doi.org/10.1016/0096-3003(90)90113-H
Shukla JB, Chauhan MS, Sundar S, Naresh R. Removal of carbon dioxide from the atmosphere to reduce global warming: a modelling study. Int J Glob Warm. 2015; 7(2): 270–292. https://doi.org/10.1504/IJGW.2015.067754
Kim YW, Kim T, Shin J, Go B, Lee M, Lee J, et al. Forecasting Abrupt Depletion of Dissolved Oxygen in Urban Streams Using Discontinuously Measured Hourly Time-Series Data. Water Resour Res. 2021 Apr; 57(4): 1-14. https://doi.org/10.1029/2020WR029188
Misra AK, Verma M. Impact of environmental education on mitigation of carbon dioxide emissions: a modelling study. Int J Glob Warm. 2015; 7(4): 466–486. https://doi.org/10.1504/IJGW.2015.070046
Misra AK, Chandra P, Raghavendra V. Modeling the depletion of dissolved oxygen in a lake due to algal bloom: Effect of time delay. Adv Water Resour. 2011; 34(10): 1232–1238. https://doi.org/10.1016/j.advwatres.2011.05.010
Misra AK, Verma M, Venturino E. Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay. Model Earth Syst Environ. 2015; 1(3): 1-17. https://doi.org/10.1007/s40808-015-0028-z
Altamirano-Fernández A, Rojas-Palma A, Espinoza-Meza S. Optimal Management Strategies to Maximize Carbon Capture in Forest Plantations: A Case Study with Pinus radiata D. Don. Forests. 2023; 14(1): 1-17. https://doi.org/10.3390/f14010082
Bulatkin GA. A New Model for Calculating the Impact of Forests and Wood Use on the Balance of C-CO2 in the Earth’s Atmosphere. Proceedings of the 3rd International Electronic Conference on Forests—Exploring New Discoveries and New Directions in Forests. Environ Sci Proc. 2022; 22(1): 1-7. https://doi.org/10.3390/IECF2022-13040
Mostafaeipour A, Bidokhti A, Fakhrzad MB, Sadegheih A, Mehrjerdi YZ. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy. 2022 Jan 1; 238(Part A): 121602. https://doi.org/10.1016/j.energy.2021.121602
Morris DW. Measuring the Allee Effect: Positive Density Dependence in Small Mammals. Ecology. 2002; 83(1): 14–20. https://doi.org/10.1890/0012-9658(2002)083[0014:MTAEPD]2.0.CO;2
Chen B. Dynamic behaviors of a commensal symbiosis model involving Allee effect and one party can not survive independently. Adv Differ Equ. 2018; 2018(1): 1–12. https://doi.org/10.1186/s13662-018-1663-2
Dennis B. Allee Effects: Population growth, Critical density, and the Chance of Extinction. Nat Resour Model. 1989; 3(4): 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x
Kuznetsov N, Reitmann V. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Switzerland: Springer; 2020. 545 p. https://doi.org/10.1007/978-3-030-50987-3
LaSalle JP. Stability Theory and Invariance Principles. In: Cesari L, Hale JK, LaSalle JP, editors. Dynamical systems. Academic Press; 1976. p. 211–222. https://doi.org/10.1016/B978-0-12-164901-2.50021-0
Meng X-Y, Xiao L. Stability and Bifurcation for a Delayed Diffusive Two-Zooplankton One-Phytoplankton Model with Two Different Functions. Complexity. 2021; 2021(1): 1-24. https://doi.org/10.1155/2021/5560157
Zeb A, Zaman G, Momani S. Square-root dynamics of a giving up smoking model, Applied Mathematical Modelling 37 (7), 5326-5334. https://doi.org/10.1016/j.apm.2012.10.005.
Collings JB. Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull Math Biol. 1995; 57(1): 63–76. https://doi.org/10.1007/BF02458316
Jawad S, Hassan SK. Bifurcation analysis of commensalism intraction and harvisting on food chain model. Braz J Biom. 2023; 41(3): 218–233. https://doi.org/10.28951/bjb.v41i3.609
Thirthar AA, Abboubakar H, Khan A, Abdeljawad T. Mathematical modeling of the COVID-19 epidemic with fear impact. AIMS Math. 2023; 8(3): 6447–6465. http://doi.org/2010.3934/math.2023326
Yousef A, Thirthar AA, Alaoui AL, Panja P, Abdeljawad T. The hunting cooperation of a predator under two prey’s competition and fear-effect in the prey-predator fractional-order model. AIMS Math. 2022; 7(4): 5463–5479. https://doi.org/10.3934/math.2022303
Al-Jaf DS. The Role of Linear Type of Harvesting on Two Competitive Species Interaction. Commun Math Biol Neurosci. 2024; 2024: 1-25. https://doi.org/10.28919/cmbn/8426
Thirthar AA. A Mathematical Modelling of a Plant-Herbivore Community with Additional Effects of Food on the Environment. Iraqi J Sci. 2023; 64(7): 3551–3566. https://doi.org/10.24996/ijs.2023.64.7.34
Kareem AM, Al-Azzawi SN. Comparison between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans. Baghdad Sci J. 2022 Oct 23; 19(5): 1140-1147. https://doi.org/10.21123/bsj.2022.6111.
Hameed HH, Al-Saedi HM. Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function. Baghdad Sci J. 2021 Jun 1; 18(2): 296-305. http://dx.doi.org/10.21123/bsj.2021.18.2.0296.
Ali A, Jawad S. Stability analysis of the depletion of dissolved oxygen for the Phytoplankton-Zooplankton model in an aquatic environment. Iraqi J Sci. 2024 May 30; 65(5): 2736-2748. https://doi.org/10.24996/ijs.2024.65.5.31.
Haque M, Venturino E. Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS. 2006; 7: 38-59.
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Furqan Nezar , Shireen Jawad, Matthias Winter, Anwar Zeb

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.